Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74. doi: 10.1073/pnas.1113246109. Epub 2012 Jan 9.
The mammalian gut harbors a dense microbial community interacting in multiple ways, including horizontal gene transfer (HGT). Pangenome analyses established particularly high levels of genetic flux between Gram-negative Enterobacteriaceae. However, the mechanisms fostering intraenterobacterial HGT are incompletely understood. Using a mouse colitis model, we found that Salmonella-inflicted enteropathy elicits parallel blooms of the pathogen and of resident commensal Escherichia coli. These blooms boosted conjugative HGT of the colicin-plasmid p2 from Salmonella enterica serovar Typhimurium to E. coli. Transconjugation efficiencies of ~100% in vivo were attributable to high intrinsic p2-transfer rates. Plasmid-encoded fitness benefits contributed little. Under normal conditions, HGT was blocked by the commensal microbiota inhibiting contact-dependent conjugation between Enterobacteriaceae. Our data show that pathogen-driven inflammatory responses in the gut can generate transient enterobacterial blooms in which conjugative transfer occurs at unprecedented rates. These blooms may favor reassortment of plasmid-encoded genes between pathogens and commensals fostering the spread of fitness-, virulence-, and antibiotic-resistance determinants.
哺乳动物肠道中栖息着密集的微生物群落,它们以多种方式相互作用,包括水平基因转移(HGT)。泛基因组分析确立了革兰氏阴性肠杆菌目中存在特别高的遗传通量。然而,促进肠内 HGT 的机制尚不完全清楚。使用小鼠结肠炎模型,我们发现沙门氏菌引起的肠炎会引发病原体和常驻共生大肠杆菌的平行繁殖。这些繁殖促进了来自肠炎沙门氏菌血清型鼠伤寒杆菌的 colicin 质粒 p2 向大肠杆菌的接合性 HGT。体内的转导效率约为 100%归因于高内在 p2 转移率。质粒编码的适应性优势贡献很小。在正常情况下,共生菌群会阻止 HGT,从而抑制肠杆菌之间的接触依赖性接合。我们的数据表明,肠道中病原体驱动的炎症反应会产生短暂的肠内细菌繁殖,其中接合转移以空前的速度发生。这些繁殖可能有利于质粒编码基因在病原体和共生菌之间的重新组合,促进适应性、毒力和抗生素耐药性决定因素的传播。