Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
J Struct Biol. 2013 Jan;181(1):71-6. doi: 10.1016/j.jsb.2012.10.007. Epub 2012 Oct 26.
Plasmodium falciparum aquaglyceroporin (PfAQP) is a multifunctional membrane protein in the plasma membrane of P. falciparum, the parasite that causes the most severe form of malaria. The current literature has established the science of PfAQP's structure, functions, and hydrogen-bonding interactions but left unanswered the following fundamental question: does glycerol modulate water permeation through aquaglyceroporin that conducts both glycerol and water? This paper provides an affirmative answer to this question of essential importance to the protein's functions. On the basis of the chemical-potential profile of glycerol from the extracellular bulk region, throughout PfAQP's conducting channel, to the cytoplasmic bulk region, this study shows the existence of a bound state of glycerol inside aquaglyceroporin's permeation pore, from which the dissociation constant is approximately 14μM. A glycerol molecule occupying the bound state occludes the conducting pore through which permeating molecules line up in single file by hydrogen-bonding with one another and with the luminal residues of aquaglyceroporin. In this way, glycerol inhibits permeation of water and other permeants through aquaglyceroporin. The biological implications of this theory are discussed and shown to agree with the existent in vitro data. It turns out that the structure of aquaglyceroporin is perfect for the van der Waals interactions between the protein and glycerol to cause the existence of the bound state deep inside the conducting pore and, thus to play an unexpected but significant role in aquaglyceroporin's functions.
疟原虫aquaglyceroporin(PfAQP)是疟原虫(寄生虫,可导致最严重的疟疾)质膜中的一种多功能膜蛋白。目前的文献已经确立了 PfAQP 的结构、功能和氢键相互作用的科学,但仍未回答以下基本问题:甘油是否调节aquaglyceroporin 中的水渗透,而 aquaglyceroporin 既可以传导甘油又可以传导水?本文对这一问题做出了肯定的回答,这对该蛋白的功能至关重要。本研究基于从细胞外基质区域到 PfAQP 传导通道再到细胞质基质区域的甘油化学势分布,展示了在 aquaglyceroporin 的渗透孔内存在甘油的结合态,其离解常数约为 14μM。占据结合态的甘油分子通过与彼此以及 aquaglyceroporin 的腔侧残基形成氢键,阻塞了传导孔,从而阻止水和其他渗透物通过 aquaglyceroporin 的渗透。本文讨论了这一理论的生物学意义,并表明其与现有的体外数据一致。事实证明,aquaglyceroporin 的结构非常适合蛋白和甘油之间的范德华相互作用,从而导致结合态在传导孔深处的存在,因此在 aquaglyceroporin 的功能中发挥了意想不到但却非常重要的作用。