IC2 MP, UMR 7285 CNRS, Université de Poitiers, 4 Rue Michel Brunet, B 27, 86022 Poitiers Cedex, France.
ChemSusChem. 2012 Nov;5(11):2106-24. doi: 10.1002/cssc.201200335. Epub 2012 Oct 30.
The worldwide glycerol stocks are increasing; to make the biodiesel industry sustainable economically, this chemical could be used as a secondary primary raw material. Electric energy or hydrogen and added-value-chemical cogeneration becomes more and more an important research topic for increasing economical and industrial interests towards electrochemical technologies. Studies on glycerol electrooxidation for fuel or electrolysis cell applications are scarce. The valorisation of glycerol is generally performed by organic chemistry reactions forming, for example, esters, glycerol carbonates, ethers, acetals or ketals. Glycerol oxidation is made up of complex pathway reactions that can produce a large number of useful intermediates or valuable fine chemicals with presently limited market impact due to expensive production processes. Many of these chemical oxidation routes lead to significant amounts of undesired by-products, and enzymatic processes are limited. Converse to classical heterogeneous processes, electrocatalytic oxidation processes can be tuned by controlling the nature, composition and structure of the electrocatalyts as well as the electrode potential. Such control may lead to very high selectivity and activity, avoiding or limiting product separation steps. The coupling of glycerol oxidation to produce chemicals with the oxygen reduction reaction in a fuel cell or water reduction reaction in an electrolysis cell on Pt-free catalysts results either in coproduction of electrical energy or hydrogen for energy storage.
全球的甘油库存正在增加;为了使生物柴油行业在经济上可持续发展,可以将这种化学品用作次要的主要原料。电能或氢气和附加值化学品联产正成为提高电化学技术的经济和工业利益的一个越来越重要的研究课题。关于甘油电化学氧化在燃料或电解池应用方面的研究很少。甘油的增值通常通过有机化学反应来实现,例如形成酯、甘油碳酸酯、醚、缩醛或酮。甘油氧化由复杂的途径反应组成,这些反应可以产生大量有用的中间体或有价值的精细化学品,但由于生产过程昂贵,目前对市场的影响有限。许多这些化学氧化途径会导致大量不想要的副产物,而酶过程受到限制。与传统的多相过程相反,电催化氧化过程可以通过控制电催化剂的性质、组成和结构以及电极电势来进行调整。这种控制可以实现非常高的选择性和活性,避免或限制产物分离步骤。在无 Pt 催化剂上,将甘油氧化与燃料电池中的氧气还原反应或电解池中的水还原反应耦合,可生产化学品,同时产生电能或氢气用于储能。