Health Services Research Centre, Akershus University Hospital, Lrenskog, Norway.
Pharmacoeconomics. 2012 Dec 1;30(12):1203-14. doi: 10.2165/11595420-000000000-00000.
National EQ-5D value sets are developed because preferences for health may vary in different populations. UK values are lower than US values for most of the 243 possible EQ-5D health states. Although similar protocols were used for data collection, analytic choices regarding how to model values from the collected data may also influence national value sets. Participants in the UK and US studies assessed the same subset of 42 EQ-5D health states using the time trade-off (TTO) method. However, different methods were used to transform negative values to a range bounded by 0 and -1, and values for all 243 health states were estimated using two different regression models. The transformation of negative values is inconsistent with expected utility theory, and the choice of which transformation method to use lacks a theoretical foundation.
Our objectives were to assess how much of the observed difference between the UK and US EQ-5D value sets may be explained by the choice of transformation method for negative values relative to the choice of regression model and the differences between elicited TTO values in the respective national studies (datasets).
We applied both transformation methods and both regression models to each of the two datasets, resulting in eight comparable value sets. We arranged these value sets in pairs in which one source of difference (transformation method, regression model or dataset) was varied. For each of these paired value sets, we calculated the mean difference between the two matching values for each of the 243 health states. Finally, we calculated the mean utility gain for all possible transitions between pairs of EQ-5D health states within each value set and used the difference in transition scores as a measure of impact from changing transformation method, regression model or dataset.
The mean absolute difference in values was 1.5 times larger when changing the transformation method than when using different datasets. The choice of transformation method had a 3.2 times larger effect on the mean health gain (transition score) than the choice of dataset. The mean health gain in the UK value set was 0.09 higher than in the US value set. Using the UK transformation method on the US dataset reduced this absolute difference to 0.02. The choice of regression model had little overall impact on the differences between the value sets.
Most of the observed differences between the UK and US value sets were caused by the use of different transformation methods for negative values, rather than differences between the two study populations as reflected in the datasets. Changing the regression model had little impact on the differences between the value sets.
由于不同人群对健康的偏好可能存在差异,因此需要制定国家 EQ-5D 值集。对于 243 种可能的 EQ-5D 健康状态中的大多数,英国值均低于美国值。尽管在数据收集方面使用了类似的方案,但对于如何从收集的数据中构建模型值的分析选择也可能影响国家值集。英国和美国研究的参与者使用时间权衡法(TTO)评估了 EQ-5D 健康状况的相同子集,共 42 种健康状态。然而,用于转换负值的方法不同,从负值转换到 0 到-1 的范围的方法也不同,并且使用了两种不同的回归模型来估计所有 243 种健康状态的值。负值的转换方法不符合期望效用理论,并且缺乏对使用哪种转换方法的理论基础。
我们的目的是评估在使用不同的回归模型和在各自的国家研究(数据集)中使用的 TTO 值之间的差异方面,选择用于负值的转换方法相对于选择回归模型以及英国和美国 EQ-5D 值集之间观察到的差异可以解释多少。
我们将两种转换方法和两种回归模型应用于两个数据集的每一个,从而得出了八个可比的价值集。我们将这些价值集以配对的方式排列,其中一个差异源(转换方法、回归模型或数据集)有所不同。对于这些配对价值集的每一个,我们计算了 243 种健康状态中每种状态的两个匹配值之间的平均差异。最后,我们计算了每个价值集中所有可能的 EQ-5D 健康状态之间配对的转换得分,并将转换得分的差异作为改变转换方法、回归模型或数据集的影响的衡量标准。
与使用不同数据集相比,当更改转换方法时,值的平均绝对差异大 1.5 倍。与数据集的选择相比,转换方法的选择对平均健康收益(转换得分)的影响大 3.2 倍。英国价值集的平均健康收益比美国价值集高 0.09。在英国数据集上使用英国转换方法将此绝对差异降低到 0.02。回归模型的选择对价值集之间的差异影响不大。
英国和美国价值集之间观察到的大多数差异是由于使用了不同的负值转换方法所致,而不是数据集所反映的两个研究人群之间的差异。改变回归模型对价值集之间的差异影响不大。