Suppr超能文献

氧化应激传感器 NPGPx 的缺失会损害 GRP78 伴侣蛋白的活性,并引发全身性疾病。

Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease.

机构信息

Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.

出版信息

Mol Cell. 2012 Dec 14;48(5):747-59. doi: 10.1016/j.molcel.2012.10.007. Epub 2012 Nov 1.

Abstract

NPGPx is a member of the glutathione peroxidase (GPx) family; however, it lacks GPx enzymatic activity due to the absence of a critical selenocysteine residue, rendering its function an enigma. Here, we show that NPGPx is a newly identified stress sensor that transmits oxidative stress signals by forming the disulfide bond between its Cys57 and Cys86 residues. This oxidized form of NPGPx binds to glucose-regulated protein (GRP)78 and forms covalent bonding intermediates between Cys86 of NPGPx and Cys41/Cys420 of GRP78. Subsequently, the formation of the disulfide bond between Cys41 and Cys420 of GRP78 enhances its chaperone activity. NPGPx-deficient cells display increased reactive oxygen species, accumulated misfolded proteins, and impaired GRP78 chaperone activity. Complete loss of NPGPx in animals causes systemic oxidative stress, increases carcinogenesis, and shortens life span. These results suggest that NPGPx is essential for releasing excessive ER stress by enhancing GRP78 chaperone activity to maintain physiological homeostasis.

摘要

NPGPx 是谷胱甘肽过氧化物酶 (GPx) 家族的成员;然而,由于缺乏关键的硒代半胱氨酸残基,它缺乏 GPx 酶活性,使其功能成为一个谜。在这里,我们表明 NPGPx 是一种新鉴定的应激传感器,通过其半胱氨酸残基 57 和 86 之间形成二硫键来传递氧化应激信号。这种氧化形式的 NPGPx 与葡萄糖调节蛋白 (GRP)78 结合,并在 NPGPx 的半胱氨酸 86 和 GRP78 的半胱氨酸 41/420 之间形成共价键中间体。随后,GRP78 的半胱氨酸 41 和 420 之间形成二硫键增强了其伴侣活性。NPGPx 缺陷细胞显示出增加的活性氧、积累的错误折叠蛋白质和受损的 GRP78 伴侣活性。动物中 NPGPx 的完全缺失会导致全身氧化应激、增加致癌作用和缩短寿命。这些结果表明,NPGPx 通过增强 GRP78 伴侣活性来释放过多的 ER 应激是必不可少的,以维持生理内稳态。

相似文献

1
Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease.
Mol Cell. 2012 Dec 14;48(5):747-59. doi: 10.1016/j.molcel.2012.10.007. Epub 2012 Nov 1.
2
NPGPx modulates CPEB2-controlled HIF-1α RNA translation in response to oxidative stress.
Nucleic Acids Res. 2015 Oct 30;43(19):9393-404. doi: 10.1093/nar/gkv1010. Epub 2015 Oct 7.
3
Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human.
EMBO Mol Med. 2013 Aug;5(8):1165-79. doi: 10.1002/emmm.201302679. Epub 2013 Jul 4.
5
Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress.
Nucleic Acids Res. 2012 Jan;40(1):323-32. doi: 10.1093/nar/gkr714. Epub 2011 Sep 9.
8
Suppression of StarD7 promotes endoplasmic reticulum stress and induces ROS production.
Free Radic Biol Med. 2016 Oct;99:286-295. doi: 10.1016/j.freeradbiomed.2016.08.023. Epub 2016 Aug 20.
10
PARK7 modulates autophagic proteolysis through binding to the N-terminally arginylated form of the molecular chaperone HSPA5.
Autophagy. 2018;14(11):1870-1885. doi: 10.1080/15548627.2018.1491212. Epub 2018 Jul 23.

引用本文的文献

1
An emerging role for cysteine-mediated redox signaling in aging.
Redox Biol. 2025 Aug 29;86:103852. doi: 10.1016/j.redox.2025.103852.
3
Navigating redox imbalance: the role of oxidative stress in embryonic development and long-term health outcomes.
Front Cell Dev Biol. 2025 Mar 26;13:1521336. doi: 10.3389/fcell.2025.1521336. eCollection 2025.
5
Redox regulation of proteostasis.
J Biol Chem. 2024 Dec;300(12):107977. doi: 10.1016/j.jbc.2024.107977. Epub 2024 Nov 8.
6
Redox regulation of UPR signalling and mitochondrial ER contact sites.
Cell Mol Life Sci. 2024 Jun 7;81(1):250. doi: 10.1007/s00018-024-05286-0.

本文引用的文献

1
Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells.
Gut. 2012 Sep;61(9):1250-60. doi: 10.1136/gutjnl-2011-301078. Epub 2011 Dec 9.
2
Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses.
Science. 2011 Dec 2;334(6060):1278-83. doi: 10.1126/science.1211485. Epub 2011 Nov 3.
4
Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation.
J Mol Biol. 2011 Feb 25;406(3):503-15. doi: 10.1016/j.jmb.2010.12.039. Epub 2011 Jan 5.
5
Crosstalk of reactive oxygen species and NF-κB signaling.
Cell Res. 2011 Jan;21(1):103-15. doi: 10.1038/cr.2010.178. Epub 2010 Dec 28.
6
Lifespan and oxidative stress show a non-linear response to atmospheric oxygen in Drosophila.
J Exp Biol. 2010 Oct 15;213(Pt 20):3441-8. doi: 10.1242/jeb.044867.
7
Identification of ROS using oxidized DCFDA and flow-cytometry.
Methods Mol Biol. 2010;594:57-72. doi: 10.1007/978-1-60761-411-1_4.
8
Disulfide formation in the ER and mitochondria: two solutions to a common process.
Science. 2009 Jun 5;324(5932):1284-7. doi: 10.1126/science.1170653.
9
Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype.
Cancer Res. 2008 Mar 15;68(6):1777-85. doi: 10.1158/0008-5472.CAN-07-5259.
10
Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?
Antioxid Redox Signal. 2007 Dec;9(12):2277-93. doi: 10.1089/ars.2007.1782.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验