Suppr超能文献

利用非齐次隐马尔可夫模型进行流感疫情的实时预测。

Nowcasting influenza epidemics using non-homogeneous hidden Markov models.

机构信息

Departmento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge, Portugal.

出版信息

Stat Med. 2013 Jul 10;32(15):2643-60. doi: 10.1002/sim.5670. Epub 2012 Nov 5.

Abstract

Timeliness of a public health surveillance system is one of its most important characteristics. The process of predicting the present situation using available incomplete information from surveillance systems has received the term nowcasting and has high public health interest. Generally in Europe, general practitioners' sentinel networks support the epidemiological surveillance of influenza activity, and each week's epidemiological bulletins are usually issued between Wednesday and Friday of the following week. In this work, we have developed a non-homogeneous hidden Markov model (HMM) that, on a weekly basis, uses as covariates an early observation of influenza-like illness (ILI) incidence rate and the number of ILI cases tested positive to nowcast the current week ILI rate and the probability that the influenza activity is in an epidemic state. We use Bayesian inference to find estimates of the model parameters and nowcasted quantities. The results obtained with data provided by the Portuguese influenza surveillance system show the additional value of using a non-homogeneous HMM instead of a homogeneous one. The use of a non-homogeneous HMM improves the surveillance system timeliness in 2 weeks.

摘要

公共卫生监测系统的及时性是其最重要的特征之一。利用监测系统中现有不完整信息来预测现状的过程被称为“即时预报”,具有很高的公共卫生意义。在欧洲,一般来说,全科医生监测网络支持流感活动的流行病学监测,每周的流行病学通报通常在下周的周三至周五发布。在这项工作中,我们开发了一个非齐次隐马尔可夫模型(HMM),该模型每周使用流感样疾病(ILI)发病率的早期观察和ILI 阳性检测病例数作为协变量,以实时预测当前周的 ILI 发病率和流感活动处于流行状态的概率。我们使用贝叶斯推断来找到模型参数和实时预测值的估计值。使用葡萄牙流感监测系统提供的数据得到的结果表明,使用非齐次 HMM 而不是齐次 HMM 的额外价值。使用非齐次 HMM 可将监测系统的及时性提高 2 周。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验