Suppr超能文献

利用日常互联网搜索查询数据可提高流感疫情的实时预测精度。

Use of daily Internet search query data improves real-time projections of influenza epidemics.

机构信息

Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA

Bosch Center for Artificial Intelligence, Robert Bosch GmbH, Renningen, Germany.

出版信息

J R Soc Interface. 2018 Oct 10;15(147):20180220. doi: 10.1098/rsif.2018.0220.

Abstract

Seasonal influenza causes millions of illnesses and tens of thousands of deaths per year in the USA alone. While the morbidity and mortality associated with influenza is substantial each year, the timing and magnitude of epidemics are highly variable which complicates efforts to anticipate demands on the healthcare system. Better methods to forecast influenza activity would help policymakers anticipate such stressors. The US Centers for Disease Control and Prevention (CDC) has recognized the importance of improving influenza forecasting and hosts an annual challenge for predicting influenza-like illness (ILI) activity in the USA. The CDC data serve as the reference for ILI in the USA, but this information is aggregated by epidemiological week and reported after a one-week delay (and may be subject to correction even after this reporting lag). Therefore, there has been substantial interest in whether real-time Internet search data, such as Google, Twitter or Wikipedia could be used to improve influenza forecasting. In this study, we combine a previously developed calibration and prediction framework with an established humidity-based transmission dynamic model to forecast influenza. We then compare predictions based on only CDC ILI data with predictions that leverage the earlier availability and finer temporal resolution of Wikipedia search data. We find that both the earlier availability and the finer temporal resolution are important for increasing forecasting performance. Using daily Wikipedia search data leads to a marked improvement in prediction performance compared to weekly data especially for a three- to four-week forecasting horizon.

摘要

季节性流感仅在美国每年就导致数百万人患病,数万人死亡。虽然每年与流感相关的发病率和死亡率都很高,但流感的流行时间和规模高度变化,这使得预测医疗保健系统的需求变得复杂。更好的流感活动预测方法将有助于政策制定者预测此类压力源。美国疾病控制与预防中心(CDC)已经认识到改进流感预测的重要性,并举办了年度预测美国流感样疾病(ILI)活动的挑战。CDC 数据是美国 ILI 的参考,但这些信息按流行病学周汇总,并在一周后延迟报告(甚至在报告延迟后仍可能需要更正)。因此,人们对实时互联网搜索数据(如 Google、Twitter 或 Wikipedia)是否可用于改善流感预测产生了浓厚的兴趣。在这项研究中,我们将先前开发的校准和预测框架与成熟的基于湿度的传播动态模型相结合,以预测流感。然后,我们将仅基于 CDC ILI 数据的预测与利用 Wikipedia 搜索数据更早的可用性和更细的时间分辨率的预测进行比较。我们发现,更早的可用性和更细的时间分辨率对于提高预测性能都很重要。与每周数据相比,使用每日 Wikipedia 搜索数据可显著提高预测性能,尤其是在三到四周的预测期内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efa1/6228485/af391d10f416/rsif20180220-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验