Materials Science and Engineering Department, Stanford University, Stanford, CA 94305, USA.
Acta Biomater. 2013 Mar;9(3):5590-9. doi: 10.1016/j.actbio.2012.10.033. Epub 2012 Nov 2.
The design of bioactive materials allows tailored studies probing cell-biomaterial interactions, however, relatively few studies have examined the effects of ligand density and material stiffness on neurite growth in three-dimensions. Elastin-like proteins (ELPs) have been designed with modular bioactive and structural regions to enable the systematic characterization of design parameters within three-dimensional (3-D) materials. To promote neurite out-growth and better understand the effects of common biomaterial design parameters on neuronal cultures we here focused on the cell-adhesive ligand density and hydrogel stiffness as design variables for ELP hydrogels. With the inherent design freedom of engineered proteins these 3-D ELP hydrogels enabled decoupled investigations into the effects of biomechanics and biochemistry on neurite out-growth from dorsal root ganglia. Increasing the cell-adhesive RGD ligand density from 0 to 1.9×10(7)ligands μm(-3) led to a significant increase in the rate, length, and density of neurite out-growth, as quantified by a high throughput algorithm developed for dense neurite analysis. An approximately two-fold improvement in total neurite out-growth was observed in materials with the higher ligand density at all time points up to 7 days. ELP hydrogels with initial elastic moduli of 0.5, 1.5, or 2.1kPa and identical RGD ligand densities revealed that the most compliant materials led to the greatest out-growth, with some neurites extending over 1800μm by day 7. Given the ability of ELP hydrogels to efficiently promote neurite out-growth within defined and tunable 3-D microenvironments these materials may be useful in developing therapeutic nerve guides and the further study of basic neuron-biomaterial interactions.
生物活性材料的设计允许针对细胞-生物材料相互作用进行定制研究,然而,相对较少的研究检查了配体密度和材料刚度对三维中神经突生长的影响。弹性蛋白样蛋白(ELP)具有模块化的生物活性和结构区域,可实现三维(3-D)材料中设计参数的系统表征。为了促进神经突生长并更好地了解常见生物材料设计参数对神经元培养的影响,我们在此将重点放在细胞黏附配体密度和水凝胶刚度作为 ELP 水凝胶的设计变量。通过工程蛋白的固有设计自由度,这些 3-D ELP 水凝胶能够分离研究生物力学和生物化学对背根神经节神经突生长的影响。将细胞黏附性 RGD 配体密度从 0 增加到 1.9×10(7)个配体 μm(-3),导致神经突生长的速度、长度和密度显著增加,这是通过为密集神经突分析开发的高通量算法定量的。在所有时间点高达 7 天的时间内,具有较高配体密度的材料中观察到总神经突生长的大约两倍提高。具有初始弹性模量为 0.5、1.5 或 2.1kPa 且相同 RGD 配体密度的 ELP 水凝胶表明,最顺应的材料导致最大的生长,一些神经突在第 7 天延伸超过 1800μm。鉴于 ELP 水凝胶在定义和可调谐 3-D 微环境内有效促进神经突生长的能力,这些材料可能有助于开发治疗性神经引导物和对基本神经元-生物材料相互作用的进一步研究。