Suppr超能文献

在长期视网膜细胞培养中,GaP 纳米线阵列上的出生后中枢神经系统神经元的神经突生长和突触小体蛋白表达。

Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture.

机构信息

Division of Solid State Physics, The Nanometer Structure Consortium, Lund University, Sweden.

出版信息

Biomaterials. 2013 Jan;34(4):875-87. doi: 10.1016/j.biomaterials.2012.10.042. Epub 2012 Nov 3.

Abstract

We have established long-term cultures of postnatal retinal cells on arrays of gallium phosphide nanowires of different geometries. Rod and cone photoreceptors, ganglion cells and bipolar cells survived on the substrates for at least 18 days in vitro. Glial cells were also observed, but these did not overgrow the neuronal population. On nanowires, neurons extended numerous long and branched neurites that expressed the synaptic vesicle marker synaptophysin. The longest nanowires (4 μm long) allowed a greater attachment and neurite elongation and our analysis suggests that the length of the nanowire per se and/or the adsorption of biomolecules on the nanowires may have been important factors regulating the observed cell behavior. The study thus shows that CNS neurons are amenable to gallium phosphide nanowires, probably as they create conditions that more closely resemble those encountered in the in vivo environment. These findings suggest that gallium phosphide nanowires may be considered as a material of interest when improving existing or designing the next generation of implantable devices. The features of gallium phosphide nanowires can be precisely controlled, making them suitable for this purpose.

摘要

我们已经在不同几何形状的磷化镓纳米线阵列上建立了长期的产后视网膜细胞培养物。在体外,杆状和锥状光感受器、节细胞和双极细胞至少在基板上存活了 18 天。还观察到了神经胶质细胞,但它们没有过度生长神经元群体。在纳米线上,神经元伸出了许多长而分支的神经突,表达突触小泡标记物突触素。最长的纳米线(4 μm 长)允许更大的附着和神经突伸长,我们的分析表明,纳米线本身的长度和/或纳米线上生物分子的吸附可能是调节观察到的细胞行为的重要因素。因此,该研究表明中枢神经系统神经元可以适应磷化镓纳米线,可能是因为它们创造了更接近体内环境的条件。这些发现表明,磷化镓纳米线可以被认为是一种在改进现有或设计下一代植入式设备时感兴趣的材料。磷化镓纳米线的特性可以精确控制,使其非常适合这种用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验