Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
J Neurosci. 2012 Nov 7;32(45):15886-901. doi: 10.1523/JNEUROSCI.4505-11.2012.
The level and integrity of glutamate transmission during critical periods of postnatal development plays an important role in the refinement of pyramidal neuron dendritic arbor, synaptic plasticity, and cognition. Presently, it is not clear how excitatory transmission via the two predominant isoforms of the vesicular glutamate transporter (VGLUT1 and VGLUT2) participate in this process. To assess a neurodevelopmental role for VGLUT2 in pyramidal neuron maturation, we generated recombinant VGLUT2 knock-out mice and inactivated VGLUT2 throughout development using Emx1-Cre(+/+) knock-in mice. We show that VGLUT2 deficiency in corticolimbic circuits results in reduced evoked glutamate transmission, release probability, and LTD at hippocampal CA3-CA1 synapses during a formative developmental period (postnatal days 11-14). In adults, we find a marked reduction in the amount of dendritic arbor across the span of the dendritic tree of CA1 pyramidal neurons and reduced long-term potentiation and levels of synaptic markers spinophilin and VGLUT1. Loss of dendritic arbor is accompanied by corresponding reductions in the number of dendritic spines, suggesting widespread alterations in synaptic connectivity. Conditional VGLUT2 knock-out mice exhibit increased open-field exploratory activity yet impaired spatial learning and memory, endophenotypes similar to those of NMDA receptor knock-down mice. Remarkably, the impairment in learning can be partially restored by selectively increasing NMDA receptor-mediated glutamate transmission in adult mice by prolonged treatment with d-serine and a d-amino acid oxidase inhibitor. Our data indicate that VGLUT2 expression is pivotal to the proper development of mature pyramidal neuronal architecture and plasticity, and that such glutamatergic deficiency leads to cognitive malfunction as observed in several neurodevelopmental psychiatric disorders.
在出生后发育的关键时期,谷氨酸传递的水平和完整性对锥体神经元树突分支、突触可塑性和认知的精细化发挥着重要作用。目前,尚不清楚通过囊泡谷氨酸转运体(VGLUT1 和 VGLUT2)的两种主要同工型的兴奋传递如何参与这一过程。为了评估 VGLUT2 在锥体神经元成熟过程中的神经发育作用,我们生成了重组 VGLUT2 敲除小鼠,并使用 Emx1-Cre(+/+) 敲入小鼠在整个发育过程中使 VGLUT2 失活。我们表明,皮质边缘回路中的 VGLUT2 缺乏会导致在形成性发育期间(出生后第 11-14 天)海马 CA3-CA1 突触的诱发谷氨酸传递、释放概率和 LTD 减少。在成年期,我们发现 CA1 锥体神经元树突全长的树突分支数量明显减少,长时程增强和突触标记物 spinophilin 和 VGLUT1 的水平降低。树突分支的丧失伴随着树突棘数量的相应减少,表明突触连接广泛改变。条件性 VGLUT2 敲除小鼠表现出增强的旷场探索活动,但空间学习和记忆受损,这是 NMDA 受体敲低小鼠的类似表型。值得注意的是,通过延长 d-丝氨酸和 d-氨基酸氧化酶抑制剂的治疗,选择性增加成年小鼠中 NMDA 受体介导的谷氨酸传递,可以部分恢复学习障碍。我们的数据表明,VGLUT2 的表达对于成熟锥体神经元结构和可塑性的正常发育至关重要,而这种谷氨酸能缺乏会导致认知功能障碍,如几种神经发育性精神障碍中观察到的那样。