Suppr超能文献

线粒体和叶绿体作为褪黑素合成的原始部位:一个与褪黑素在真核生物中的主要功能和进化相关的假说。

Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes.

机构信息

Department of Cellular and Structural Biology, The University of Texas, Health Science Center, San Antonio, TX 78229, USA.

出版信息

J Pineal Res. 2013 Mar;54(2):127-38. doi: 10.1111/jpi.12026. Epub 2012 Nov 9.

Abstract

Mitochondria and chloroplasts are major sources of free radical generation in living organisms. Because of this, these organelles require strong protection from free radicals and associated oxidative stress. Melatonin is a potent free radical scavenger and antioxidant. It meets the criteria as a mitochondrial and chloroplast antioxidant. Evidence has emerged to show that both mitochondria and chloroplasts may have the capacity to synthesize and metabolize melatonin. The activity of arylalkylamine N-acetyltransferase (AANAT), the reported rate-limiting enzyme in melatonin synthesis, has been identified in mitochondria, and high levels of melatonin have also been found in this organelle. From an evolutionary point of view, the precursor of mitochondria probably is the purple nonsulfur bacterium, particularly, Rhodospirillum rubrum, and chloroplasts are probably the descendents of cyanobacteria. These bacterial species were endosymbionts of host proto-eukaryotes and gradually transformed into cellular organelles, that is, mitochondria and chloroplasts, respectively, thereby giving rise to eukaryotic cells. Of special importance, both purple nonsulfur bacteria (R. rubrum) and cyanobacteria synthesize melatonin. The enzyme activities required for melatonin synthesis have also been detected in these primitive species. It is our hypothesis that mitochondria and chloroplasts are the original sites of melatonin synthesis in the early stage of endosymbiotic organisms; this synthetic capacity was carried into host eukaryotes by the above-mentioned bacteria. Moreover, their melatonin biosynthetic capacities have been preserved during evolution. In most, if not in all cells, mitochondria and chloroplasts may continue to be the primary sites of melatonin generation. Melatonin production in other cellular compartments may have derived from mitochondria and chloroplasts. On the basis of this hypothesis, it is also possible to explain why plants typically have higher melatonin levels than do animals. In plants, both chloroplasts and mitochondria likely synthesize melatonin, while animal cells contain only mitochondria. The high levels of melatonin produced by mitochondria and chloroplasts are used to protect these important cellular organelles against oxidative stress and preserve their physiological functions. The superior beneficial effects of melatonin in both mitochondria and chloroplasts have been frequently reported.

摘要

线粒体和叶绿体是生物体内自由基生成的主要来源。正因为如此,这些细胞器需要强烈的保护来防止自由基和相关的氧化应激。褪黑素是一种强大的自由基清除剂和抗氧化剂。它符合作为线粒体和叶绿体抗氧化剂的标准。有证据表明,线粒体和叶绿体都可能具有合成和代谢褪黑素的能力。已鉴定出芳香族烷基胺 N-乙酰基转移酶(AANAT)的活性,该酶是褪黑素合成的报道限速酶,并且在该细胞器中也发现了高水平的褪黑素。从进化的角度来看,线粒体的前体可能是紫色非硫细菌,特别是红螺菌属,而叶绿体可能是蓝藻的后代。这些细菌物种是宿主原核生物的内共生体,并逐渐转化为细胞细胞器,即线粒体和叶绿体,从而产生真核细胞。特别重要的是,紫色非硫细菌(R. rubrum)和蓝藻都合成褪黑素。在这些原始物种中也检测到了褪黑素合成所需的酶活性。我们的假设是,线粒体和叶绿体是内共生生物早期褪黑素合成的原始部位;这种合成能力是由上述细菌带入宿主真核生物的。此外,它们的褪黑素生物合成能力在进化过程中得到了保留。在大多数(如果不是全部)细胞中,线粒体和叶绿体可能仍然是褪黑素生成的主要部位。其他细胞区室中的褪黑素生成可能源自线粒体和叶绿体。基于这一假设,也可以解释为什么植物通常比动物具有更高的褪黑素水平。在植物中,叶绿体和线粒体都可能合成褪黑素,而动物细胞仅含有线粒体。线粒体和叶绿体产生的高水平褪黑素用于保护这些重要的细胞细胞器免受氧化应激,并保持其生理功能。褪黑素在线粒体和叶绿体中的优越有益作用经常被报道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验