Suppr超能文献

精神分裂症临床和功能结局的早期预测。

Early prediction of clinical and functional outcome in schizophrenia.

机构信息

Schizophrenia Program, Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada.

出版信息

Eur Neuropsychopharmacol. 2013 Aug;23(8):842-51. doi: 10.1016/j.euroneuro.2012.10.005. Epub 2012 Nov 7.

Abstract

UNLABELLED

The objective of this paper was to investigate the prognostic and predictive value of a small panel of independent and clinically important factors based on symptom improvement, baseline cognitive impairment, and weight change during the early treatment phase.

METHODS

The study sample was based on a double-blind, 6-month continuation study of ziprasidone and olanzapine (N=94). We developed a parsimonious 6-month GAF prediction function using a logistic regression model, and evaluated its predictive accuracy and performance using bootstrap estimates of c-statistics and error in predicted probability.

RESULTS

At up to 6 months of follow-up, 52 (55%) of all subjects treated with ziprasidone or olanzapine met the responder criterion of ≥50% improvement in GAF. At Week 2 (acute phase), the majority of ziprasidone (75%) and olanzapine (70%) patients showed greater than 25% improvement in the BPRS psychotic symptom subscale score. These early psychotic symptom responders (Week 2) showed significantly greater improvement in global functioning than early non-responders at all time points (Week 6 and Month 6) (all p's<0.05), confirming early response as an indicator of continued responsiveness to treatment over at least 6 months. A multivariate prediction function based on baseline neurocognitive scores and GAF, early reduction of psychotic symptoms at 2 weeks, and percentage of weight change observed at 6 weeks (All p's <0.05), showed statistically acceptable predictive performance (boostrap c-statistics=0.8598).

CONCLUSIONS

Our findings suggest that a parsimonious model incorporating a psychotic symptom assessment score, baseline neurocognitive performance, and risk of weight gain can be developed for predicting patients' likelihood of achieving favorable, long-term treatment outcomes.

摘要

未加标签

本文的目的是研究基于症状改善、基线认知障碍和早期治疗阶段体重变化的小而独立的临床重要因素预测和预后价值。

方法

研究样本基于齐拉西酮和奥氮平的双盲、6 个月延续研究(N=94)。我们使用逻辑回归模型开发了一个简洁的 6 个月 GAF 预测函数,并使用 bootstrap 估计的 c 统计量和预测概率误差评估其预测准确性和性能。

结果

在长达 6 个月的随访中,接受齐拉西酮或奥氮平治疗的所有受试者中有 52 名(55%)符合 GAF 改善≥50%的应答标准。在第 2 周(急性期),齐拉西酮(75%)和奥氮平(70%)患者的大多数患者的 BPRS 精神病症状子量表评分改善超过 25%。这些早期精神病症状应答者(第 2 周)在所有时间点(第 6 周和第 6 个月)的总体功能改善明显大于早期无应答者(所有 p 值均<0.05),证实早期应答是至少 6 个月内继续对治疗有反应的指标。基于基线神经认知评分和 GAF、2 周时早期精神病症状减少以及 6 周时体重变化百分比的多变量预测函数(所有 p 值均<0.05)显示出统计学上可接受的预测性能(bootstrap c 统计量=0.8598)。

结论

我们的研究结果表明,可以开发一个简洁的模型,该模型包含精神病症状评估评分、基线神经认知表现和体重增加的风险,以预测患者实现有利长期治疗结果的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验