Suppr超能文献

循环微囊泡的蛋白分型可实时监测胶质母细胞瘤的治疗效果。

Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy.

机构信息

Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.

出版信息

Nat Med. 2012 Dec;18(12):1835-40. doi: 10.1038/nm.2994. Epub 2012 Nov 11.

Abstract

Glioblastomas shed large quantities of small, membrane-bound microvesicles into the circulation. Although these hold promise as potential biomarkers of therapeutic response, their identification and quantification remain challenging. Here, we describe a highly sensitive and rapid analytical technique for profiling circulating microvesicles directly from blood samples of patients with glioblastoma. Microvesicles, introduced onto a dedicated microfluidic chip, are labeled with target-specific magnetic nanoparticles and detected by a miniaturized nuclear magnetic resonance system. Compared with current methods, this integrated system has a much higher detection sensitivity and can differentiate glioblastoma multiforme (GBM) microvesicles from nontumor host cell-derived microvesicles. We also show that circulating GBM microvesicles can be used to analyze primary tumor mutations and as a predictive metric of treatment-induced changes. This platform could provide both an early indicator of drug efficacy and a potential molecular stratifier for human clinical trials.

摘要

胶质母细胞瘤会向循环系统中大量释放出小的、膜结合的微泡。尽管这些微泡有希望成为治疗反应的潜在生物标志物,但它们的识别和定量仍然具有挑战性。在这里,我们描述了一种从胶质母细胞瘤患者的血液样本中直接分析循环微泡的高灵敏度和快速分析技术。微泡被引入专用的微流控芯片中,并用靶向特异性磁性纳米颗粒进行标记,并通过小型化的核磁共振系统进行检测。与当前的方法相比,这种集成系统具有更高的检测灵敏度,并且可以区分胶质母细胞瘤(GBM)微泡和非肿瘤宿主细胞衍生的微泡。我们还表明,循环 GBM 微泡可用于分析原发性肿瘤突变,并作为治疗诱导变化的预测指标。该平台可以提供药物疗效的早期指标,并为人类临床试验提供潜在的分子分层。

相似文献

1
Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy.
Nat Med. 2012 Dec;18(12):1835-40. doi: 10.1038/nm.2994. Epub 2012 Nov 11.
2
Emerging circulating biomarkers in glioblastoma: promises and challenges.
Expert Rev Mol Diagn. 2015;15(10):1311-23. doi: 10.1586/14737159.2015.1087315.
3
Magnetic Resonance Nano-Theranostics for Glioblastoma Multiforme.
Curr Pharm Des. 2015;21(36):5256-66. doi: 10.2174/1381612821666150923103307.
4
Magnetic nanosensor for detection and profiling of erythrocyte-derived microvesicles.
ACS Nano. 2013 Dec 23;7(12):11227-33. doi: 10.1021/nn405016y. Epub 2013 Dec 2.
5
Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.
Nat Cell Biol. 2008 Dec;10(12):1470-6. doi: 10.1038/ncb1800. Epub 2008 Nov 16.
6
Preoperative biomarkers of tumour vascularity are elevated in patients with glioblastoma multiforme.
J Clin Neurosci. 2015 Nov;22(11):1802-8. doi: 10.1016/j.jocn.2015.06.013. Epub 2015 Aug 22.
7
Microfluidic isolation and transcriptome analysis of serum microvesicles.
Lab Chip. 2010 Feb 21;10(4):505-11. doi: 10.1039/b916199f. Epub 2009 Dec 8.
9
Clinical Significance of Extracellular Vesicles in Plasma from Glioblastoma Patients.
Clin Cancer Res. 2019 Jan 1;25(1):266-276. doi: 10.1158/1078-0432.CCR-18-1941. Epub 2018 Oct 4.
10
Oncogenic MSH6-CXCR4-TGFB1 Feedback Loop: A Novel Therapeutic Target of Photothermal Therapy in Glioblastoma Multiforme.
Theranostics. 2019 Feb 20;9(5):1453-1473. doi: 10.7150/thno.29987. eCollection 2019.

引用本文的文献

1
Extracellular vesicles: biogenesis mechanism and impacts on tumor immune microenvironment.
J Biomed Sci. 2025 Sep 4;32(1):85. doi: 10.1186/s12929-025-01182-2.
2
The Quest for Non-Invasive Diagnosis: A Review of Liquid Biopsy in Glioblastoma.
Cancers (Basel). 2025 Aug 19;17(16):2700. doi: 10.3390/cancers17162700.
3
Nanotechnology-Enhanced Extracellular Vesicles -Based Chipsets in Early Cancer Detection and Theranostics.
Int J Nanomedicine. 2025 Aug 14;20:9899-9929. doi: 10.2147/IJN.S529128. eCollection 2025.
5
Glioblastoma at the crossroads: current understanding and future therapeutic horizons.
Signal Transduct Target Ther. 2025 Jul 9;10(1):213. doi: 10.1038/s41392-025-02299-4.
6
Exosomal proteins: new targets for early diagnosis and treatment of cancer.
Front Immunol. 2025 Jun 19;16:1613494. doi: 10.3389/fimmu.2025.1613494. eCollection 2025.
7
Pluripotent stem cell-derived extracellular vesicles for systemic immune modulation in diabetes therapy.
Res Sq. 2025 Jun 10:rs.3.rs-6415252. doi: 10.21203/rs.3.rs-6415252/v1.
10
Exosome isolation and characterization for advanced diagnostic and therapeutic applications.
Mater Today Bio. 2025 Feb 25;31:101613. doi: 10.1016/j.mtbio.2025.101613. eCollection 2025 Apr.

本文引用的文献

1
Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas.
Sci Transl Med. 2012 Jan 11;4(116):116ra5. doi: 10.1126/scitranslmed.3002796.
2
Miniature magnetic resonance system for point-of-care diagnostics.
Lab Chip. 2011 Jul 7;11(13):2282-7. doi: 10.1039/c1lc20177h. Epub 2011 May 5.
4
Highly magnetic core-shell nanoparticles with a unique magnetization mechanism.
Angew Chem Int Ed Engl. 2011 May 9;50(20):4663-6. doi: 10.1002/anie.201100101. Epub 2011 Apr 14.
5
Micro-NMR for rapid molecular analysis of human tumor samples.
Sci Transl Med. 2011 Feb 23;3(71):71ra16. doi: 10.1126/scitranslmed.3002048.
6
Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular 'debris'.
Semin Immunopathol. 2011 Sep;33(5):455-67. doi: 10.1007/s00281-011-0250-3. Epub 2011 Feb 12.
8
Clinical relevance of microparticles from platelets and megakaryocytes.
Curr Opin Hematol. 2010 Nov;17(6):578-84. doi: 10.1097/MOH.0b013e32833e77ee.
9
Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection.
Nat Nanotechnol. 2010 Sep;5(9):660-5. doi: 10.1038/nnano.2010.148. Epub 2010 Aug 1.
10
Targeting the dynamic HSP90 complex in cancer.
Nat Rev Cancer. 2010 Aug;10(8):537-49. doi: 10.1038/nrc2887.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验