Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.
Nat Med. 2012 Dec;18(12):1835-40. doi: 10.1038/nm.2994. Epub 2012 Nov 11.
Glioblastomas shed large quantities of small, membrane-bound microvesicles into the circulation. Although these hold promise as potential biomarkers of therapeutic response, their identification and quantification remain challenging. Here, we describe a highly sensitive and rapid analytical technique for profiling circulating microvesicles directly from blood samples of patients with glioblastoma. Microvesicles, introduced onto a dedicated microfluidic chip, are labeled with target-specific magnetic nanoparticles and detected by a miniaturized nuclear magnetic resonance system. Compared with current methods, this integrated system has a much higher detection sensitivity and can differentiate glioblastoma multiforme (GBM) microvesicles from nontumor host cell-derived microvesicles. We also show that circulating GBM microvesicles can be used to analyze primary tumor mutations and as a predictive metric of treatment-induced changes. This platform could provide both an early indicator of drug efficacy and a potential molecular stratifier for human clinical trials.
胶质母细胞瘤会向循环系统中大量释放出小的、膜结合的微泡。尽管这些微泡有希望成为治疗反应的潜在生物标志物,但它们的识别和定量仍然具有挑战性。在这里,我们描述了一种从胶质母细胞瘤患者的血液样本中直接分析循环微泡的高灵敏度和快速分析技术。微泡被引入专用的微流控芯片中,并用靶向特异性磁性纳米颗粒进行标记,并通过小型化的核磁共振系统进行检测。与当前的方法相比,这种集成系统具有更高的检测灵敏度,并且可以区分胶质母细胞瘤(GBM)微泡和非肿瘤宿主细胞衍生的微泡。我们还表明,循环 GBM 微泡可用于分析原发性肿瘤突变,并作为治疗诱导变化的预测指标。该平台可以提供药物疗效的早期指标,并为人类临床试验提供潜在的分子分层。