Li Song, Zarubova Jana, Hasani-Sadrabadi Mohammad, Wu Yutong, Diamante Graciel, Cheng Jenny, Han Xiao, Majedi Fatemeh, Yang Li, Wang Olivia, Ahn In Sook, Zhang Jianyi, Lian Xiaojun, Gu Zhen, Butte Manish, Ardehali Reza, Butler Peter, Hu Tony, Bouchard Louis, Yang Xia
UCLA.
University of California, Los Angeles.
Res Sq. 2025 Jun 10:rs.3.rs-6415252. doi: 10.21203/rs.3.rs-6415252/v1.
Embryos can achieve immune tolerance, yet the underlying mechanisms remain incompletely understood. Here, we demonstrate that pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), secrete extracellular vesicles (EVs) that markedly outperform mesenchymal stem cell (MSC)-derived EVs in suppressing pro-inflammatory cytokine secretion, inhibiting activated T-cell proliferation, and inducing regulatory T-cell (Treg) formation through CDK8 downregulation. Nuclear magnetic resonance (NMR) analysis reveals distinct molecular fingerprints of PSC EVs compared to those of MSC EVs. Moreover, comparative analyses show that PSC EVs contain unique proteins and microRNAs, such as the pluripotency-associated proteins ROR1 and CD133 and members of the miR-302 family, which are not found in MSC EVs, as determined by proteomic profiling and microRNA sequencing. Notably, the dynamic suspension culture of PSC aggregates significantly increases EV yield, offering a scalable and reproducible source superior to other cell sources. To evaluate their therapeutic potential, we employed an antigen-specific type 1 diabetes model and found that two local injections of iPSC EVs, particularly when delivered via a biomaterial scaffold, significantly enhanced diabetes-free survival. These treatments increased Treg populations in draining lymph nodes, induced systemic immunomodulation, and preserved β-cell mass from immune-mediated destruction. The immunomodulatory capability of PSC EVs suggests broad applications in treating autoimmune diseases and supporting stem cell-derived cell therapies by promoting immune tolerance. Their scalability, consistency, and superior therapeutic properties position PSC EVs as a compelling platform for next-generation immunotherapies and cell-based treatment strategies.
胚胎能够实现免疫耐受,但其潜在机制仍未完全明确。在此,我们证明多能干细胞(PSC),包括胚胎干细胞(ESC)和诱导多能干细胞(iPSC),分泌的细胞外囊泡(EV)在抑制促炎细胞因子分泌、抑制活化T细胞增殖以及通过下调CDK8诱导调节性T细胞(Treg)形成方面明显优于间充质干细胞(MSC)来源的EV。核磁共振(NMR)分析揭示了PSC EV与MSC EV不同的分子特征。此外,比较分析表明,PSC EV含有独特的蛋白质和微小RNA,如多能性相关蛋白ROR1和CD133以及miR - 302家族成员,这些在MSC EV中未发现,这是通过蛋白质组分析和微小RNA测序确定的。值得注意的是,PSC聚集体的动态悬浮培养显著提高了EV产量,提供了一种优于其他细胞来源的可扩展且可重复的来源。为了评估它们的治疗潜力,我们采用了抗原特异性1型糖尿病模型,发现两次局部注射iPSC EV,特别是通过生物材料支架递送时,显著提高了无糖尿病生存率。这些治疗增加了引流淋巴结中的Treg群体,诱导了全身免疫调节,并保护β细胞群免受免疫介导的破坏。PSC EV的免疫调节能力表明其在治疗自身免疫性疾病和通过促进免疫耐受支持干细胞衍生细胞疗法方面具有广泛应用。它们的可扩展性、一致性和卓越的治疗特性使PSC EV成为下一代免疫疗法和基于细胞的治疗策略的有吸引力的平台。