文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预后基因表达谱在结直肠癌中的临床价值:系统评价。

Clinical value of prognosis gene expression signatures in colorectal cancer: a systematic review.

机构信息

Unit of Biomarkers and Susceptibility (UBS), Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain.

出版信息

PLoS One. 2012;7(11):e48877. doi: 10.1371/journal.pone.0048877. Epub 2012 Nov 7.


DOI:10.1371/journal.pone.0048877
PMID:23145004
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3492249/
Abstract

INTRODUCTION: The traditional staging system is inadequate to identify those patients with stage II colorectal cancer (CRC) at high risk of recurrence or with stage III CRC at low risk. A number of gene expression signatures to predict CRC prognosis have been proposed, but none is routinely used in the clinic. The aim of this work was to assess the prediction ability and potential clinical usefulness of these signatures in a series of independent datasets. METHODS: A literature review identified 31 gene expression signatures that used gene expression data to predict prognosis in CRC tissue. The search was based on the PubMed database and was restricted to papers published from January 2004 to December 2011. Eleven CRC gene expression datasets with outcome information were identified and downloaded from public repositories. Random Forest classifier was used to build predictors from the gene lists. Matthews correlation coefficient was chosen as a measure of classification accuracy and its associated p-value was used to assess association with prognosis. For clinical usefulness evaluation, positive and negative post-tests probabilities were computed in stage II and III samples. RESULTS: Five gene signatures showed significant association with prognosis and provided reasonable prediction accuracy in their own training datasets. Nevertheless, all signatures showed low reproducibility in independent data. Stratified analyses by stage or microsatellite instability status showed significant association but limited discrimination ability, especially in stage II tumors. From a clinical perspective, the most predictive signatures showed a minor but significant improvement over the classical staging system. CONCLUSIONS: The published signatures show low prediction accuracy but moderate clinical usefulness. Although gene expression data may inform prognosis, better strategies for signature validation are needed to encourage their widespread use in the clinic.

摘要

简介:传统的分期系统不足以识别出 II 期结直肠癌(CRC)中复发风险高或 III 期 CRC 中复发风险低的患者。已经提出了许多用于预测 CRC 预后的基因表达谱,但没有一种在临床上常规使用。本研究旨在评估这些特征在一系列独立数据集的预测能力和潜在临床应用价值。

方法:文献综述确定了 31 个基因表达谱,这些谱使用基因表达数据预测 CRC 组织的预后。该搜索基于 PubMed 数据库,并限制在 2004 年 1 月至 2011 年 12 月期间发表的论文。从公共存储库中确定并下载了 11 个具有生存信息的 CRC 基因表达数据集。随机森林分类器用于从基因列表中构建预测器。马修斯相关系数被选为分类准确性的度量标准,其相关的 p 值用于评估与预后的相关性。为了评估临床应用价值,在 II 期和 III 期样本中计算了阳性和阴性后测试概率。

结果:五个基因特征与预后显著相关,并在其自身的训练数据集中提供了合理的预测准确性。然而,所有特征在独立数据中的重现性都较低。按阶段或微卫星不稳定性状态进行的分层分析显示出显著的相关性,但区分能力有限,尤其是在 II 期肿瘤中。从临床角度来看,最具预测性的特征与经典分期系统相比略有但显著的改善。

结论:已发表的特征显示出较低的预测准确性,但具有中等的临床应用价值。尽管基因表达数据可以提供预后信息,但需要更好的特征验证策略来鼓励其在临床中广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe09/3492249/5a4042b73e3f/pone.0048877.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe09/3492249/31b7413db1b2/pone.0048877.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe09/3492249/fd4521ece10b/pone.0048877.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe09/3492249/5a4042b73e3f/pone.0048877.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe09/3492249/31b7413db1b2/pone.0048877.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe09/3492249/fd4521ece10b/pone.0048877.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe09/3492249/5a4042b73e3f/pone.0048877.g003.jpg

相似文献

[1]
Clinical value of prognosis gene expression signatures in colorectal cancer: a systematic review.

PLoS One. 2012-11-7

[2]
The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation.

Health Technol Assess. 2011-9

[3]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[4]
Chemoprevention of colorectal cancer: systematic review and economic evaluation.

Health Technol Assess. 2010-6

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas.

Cochrane Database Syst Rev. 2017-1-8

[8]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[9]
Systematic review and validation of prediction rules for identifying children with serious infections in emergency departments and urgent-access primary care.

Health Technol Assess. 2012

[10]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

引用本文的文献

[1]
Prognostic aging gene-based score for colorectal cancer: unveiling links to drug resistance, mutation burden, and personalized treatment strategies.

Discov Oncol. 2024-9-17

[2]
Identification of a Twelve-microRNA Signature with Prognostic Value in Stage II Microsatellite Stable Colon Cancer.

Cancers (Basel). 2023-6-23

[3]
Enhanced Clinical Utility of Molecular Budding Signature as a Recurrence Risk Determinant in Stage II and III Colon Cancer Patients.

Ann Surg Oncol. 2023-8

[4]
Signature literature review reveals AHCY, DPYSL3, and NME1 as the most recurrent prognostic genes for neuroblastoma.

BioData Min. 2023-3-4

[5]
Towards a potential pan-cancer prognostic signature for gene expression based on probesets and ensemble machine learning.

BioData Min. 2022-11-3

[6]
Adoptive NK Cell Transfer as a Treatment in Colorectal Cancer Patients: Analyses of Tumour Cell Determinants Correlating With Efficacy and .

Front Immunol. 2022

[7]
Molecular Biomarker of Drug Resistance Developed From Patient-Derived Organoids Predicts Survival of Colorectal Cancer Patients.

Front Oncol. 2022-3-29

[8]
Overexpression of DDIT4 and TPTEP1 are associated with metastasis and advanced stages in colorectal cancer patients: a study utilizing bioinformatics prediction and experimental validation.

Cancer Cell Int. 2021-6-9

[9]
Machine learning identifies two autophagy-related genes as markers of recurrence in colorectal cancer.

J Int Med Res. 2020-10

[10]
Lymphocytic infiltration in stage II microsatellite stable colorectal tumors: A retrospective prognosis biomarker analysis.

PLoS Med. 2020-9-24

本文引用的文献

[1]
Gene expression profiling to dissect the complexity of cancer biology: pitfalls and promise.

Semin Cancer Biol. 2012-3-7

[2]
Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue.

J Clin Oncol. 2011-11-7

[3]
Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer.

J Clin Oncol. 2011-11-7

[4]
Gene expression differences between colon and rectum tumors.

Clin Cancer Res. 2011-10-5

[5]
Challenges in the management of stage II colon cancer.

Semin Oncol. 2011-8

[6]
Consensus pathways implicated in prognosis of colorectal cancer identified through systematic enrichment analysis of gene expression profiling studies.

PLoS One. 2011-4-25

[7]
Predictive and prognostic markers in colorectal cancer.

Curr Oncol Rep. 2011-6

[8]
A 12-gene genomic instability signature predicts clinical outcomes in multiple cancer types.

Int J Biol Markers. 2010

[9]
An online gene expression assay for determining adjuvant therapy eligibility in patients with stage 2 or 3 colon cancer.

Br J Cancer. 2010-11-30

[10]
Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer.

J Clin Oncol. 2010-11-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索