Suppr超能文献

利用电路分析测量用户相似度:在协同过滤中的应用。

Measuring user similarity using electric circuit analysis: application to collaborative filtering.

机构信息

Graduate School of Culture Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

出版信息

PLoS One. 2012;7(11):e49126. doi: 10.1371/journal.pone.0049126. Epub 2012 Nov 7.

Abstract

We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

摘要

我们提出了一种使用电路分析测量协同过滤中用户相似度的新技术。电路分析用于测量电路节点之间的电位差。在本文中,通过将该方法应用于包含用户和项目的交易网络,即用户-项目矩阵,并利用从项目采用的角度来看用户关系结构的全部信息,我们克服了协同过滤中一对一相似度计算方法(如 Pearson 相关系数、Tanimoto 系数和汉明距离)的局限性。我们发现电路分析可以成功地纳入推荐系统,并具有显著提高可预测性的潜力,特别是与基于用户的协同过滤相结合时。我们还提出了四种将 Pearson 相关系数方法与电路分析相结合的混合算法。其中一种算法的性能最多比传统协同过滤提高 37.5%。这项工作为物理学和计算机科学之间的跨学科研究以及新推荐系统的开发开辟了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25e/3492312/c24187b679d2/pone.0049126.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验