Suppr超能文献

基于用户和项目相似度度量的协同过滤用户评分预测。

Users' Rating Predictions Using Collaborating Filtering Based on Users and Items Similarity Measures.

机构信息

Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Rawalpindi, Pakistan.

College of Engineering, Al Ain University, Al Ain, UAE.

出版信息

Comput Intell Neurosci. 2022 Jul 8;2022:2347641. doi: 10.1155/2022/2347641. eCollection 2022.

Abstract

The social media has made the world a global world and we, in addition to, as part of physical society, are now part of the virtual society as well. There has been the generation of a large amount of information over the social web. By way of increasing online information, new opportunities emerged, and diverse issues have been raised, which have attracted researchers to address these research problems. In this current age, where online business and e-commerce are part of our daily lives, recommender systems (RSs) are very effective for information filtering. RSs play a significant role in our lives by assisting users in recommending items and services what they may be interesting in to purchase or avail. In this research work, our goal is to predict the users' ratings for various items, which are an active research area in collaborative filtering (CF). In this work, we have explored various similarity measures based on user-user and item-item rating predictions on different datasets by applying collaborative filtering approaches. The comparison of item-item and user-user CF algorithms such as user K-Nearest Neighbour using cosine; similarity, Pearson correlation as well as item-based K-NN using these measures with baseline approaches and matrix-based methods such as Matrix factorization (MF), biased MF, and factor wise MF has been carried out. For empirical-based comparison analysis, diverse approaches have been selected such as slope one, random, and global average, and it revealed that item-item K-NN using Pearson correlation has outperformed all other applied approaches. For the experiments, three real world and widely used datasets of MovieLens 1M, CiaoDVD, and MovieLens 100k have been used. The empirical-based results have been evaluated by using standard performance evaluation measures of RMSE and MAE.

摘要

社交媒体使世界成为一个全球化的世界,我们除了是物理社会的一部分外,现在也是虚拟社会的一部分。社交网络上产生了大量的信息。随着在线信息的增加,出现了新的机会,也提出了各种问题,这吸引了研究人员来解决这些研究问题。在这个网络商务和电子商务成为我们日常生活一部分的时代,推荐系统(RS)对于信息过滤非常有效。RS 通过向用户推荐他们可能有兴趣购买或使用的商品和服务,在我们的生活中发挥着重要作用。在这项研究工作中,我们的目标是预测用户对各种项目的评分,这是协同过滤(CF)中的一个活跃研究领域。在这项工作中,我们通过应用协同过滤方法,在不同的数据集上探索了基于用户-用户和项目-项目评分预测的各种相似性度量。比较了基于项目的 K-NN 和基于用户的 K-NN 等项目-项目和用户-用户 CF 算法,例如使用余弦的用户 K-最近邻居;相似性、皮尔逊相关性以及使用这些度量的基于项目的 K-NN,以及基线方法和基于矩阵的方法,如矩阵分解(MF)、有偏 MF 和因子分解 MF。为了进行基于经验的比较分析,选择了多种方法,如斜率 1、随机和全局平均,结果表明基于皮尔逊相关性的项目项目 K-NN 优于所有其他应用方法。对于实验,使用了三个真实世界和广泛使用的数据集,即 MovieLens 1M、CiaoDVD 和 MovieLens 100k。使用 RMSE 和 MAE 等标准性能评估指标评估了基于经验的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e00/9287091/582aa917f8c8/CIN2022-2347641.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验