Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
PLoS One. 2012;7(11):e49293. doi: 10.1371/journal.pone.0049293. Epub 2012 Nov 8.
Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca(2+) signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.
活动依赖性突触可塑性至少部分地构成了学习和记忆过程的基础。N-甲基-D-天冬氨酸受体(NMDAR)依赖性长时程增强(LTP)是主要的突触可塑性模型。在 LTP 诱导过程中,Ca2+/钙调蛋白依赖性蛋白激酶 II(CaMKII)被激活、自身磷酸化并持续转位到突触后密度,在那里与 NMDAR 结合。如果这些步骤中的任何一个受到抑制,LTP 就会被破坏。内源性 CaMKII 抑制剂蛋白 CaMKIINα、β在学习后会迅速在特定脑区上调。我们最近表明,在特定脑区学习后,CaMKIINα 的衍生肽(CN 肽)的短暂应用会持续抑制突触强度并逆转 LTP 饱和,因为它允许先前饱和的通路进一步诱导 LTP。这种治疗会破坏基础 CaMKII-NMDAR 相互作用并减少棘突中结合的 CaMKII 分数。为了解 CaMKIIN 的功能并进一步了解 CaMKII 在维持突触强度中的作用,我们在这里更深入地研究了 CN 肽诱导的突触抑制(CN 抑制)在大鼠海马切片中的机制。我们表明,CN 抑制不需要谷氨酸能突触活动或 Ca2+信号,从而排除了在切片中触发非特异性活动依赖性长时程抑制(LTD)的可能性。此外,阻断实验表明,CN 抑制和 NMDAR-LTD 具有不同的表达机制。我们表明,CN 抑制不涉及包括蛋白质合成或蛋白酶体介导的降解在内的复杂代谢途径。值得注意的是,CN 抑制在新生大鼠中无法解决,因为 CaMKII 主要位于细胞质中,在突触后密度中几乎不存在。总体而言,我们的结果支持 CN 肽对突触 CaMKII-NMDAR 结合的直接影响,并表明 CaMKIINα、β可能是关键的与可塑性相关的蛋白,它们可能作为细胞范围的内稳态调节剂发挥作用,防止 LTP 机制的饱和,或者选择性地在特定的突触群中消除 LTP 诱导的痕迹。