Biomathematics Consulting, 1932 Grist Stone Court NE, Atlanta, GA 30307, USA.
Toxicology. 2013 Nov 16;313(2-3):134-44. doi: 10.1016/j.tox.2012.10.016. Epub 2012 Nov 9.
Mixture risk assessment is often hampered by the lack of dose-response information on the mixture being assessed, forcing reliance on component formulas such as dose addition. We present a four-step approach for evaluating chemical mixture data for consistency with dose addition for use in supporting a component based mixture risk assessment. Following the concepts in the U.S. EPA mixture risk guidance (U.S. EPA, 2000a,b), toxicological interaction for a defined mixture (all components known) is departure from a clearly articulated definition of component additivity. For the common approach of dose additivity, the EPA guidance identifies three desirable characteristics, foremost of which is that the component chemicals are toxicologically similar. The other two characteristics are empirical: the mixture components have toxic potencies that are fixed proportions of each other (throughout the dose range of interest), and the mixture dose term in the dose additive prediction formula, which we call the combined prediction model (CPM), can be represented by a linear combination of the component doses. A consequent property of the proportional toxic potencies is that the component chemicals must share a common dose-response model, where only the dose coefficients depend on the chemical components. A further consequence is that the mixture data must be described by the same mathematical function ("mixture model") as the components, but with a distinct coefficient for the total mixture dose. The mixture response is predicted from the component dose-response curves by using the dose additive CPM and the prediction is then compared with the observed mixture results. The four steps are to evaluate: (1) toxic proportionality by determining how well the CPM matches the single chemical models regarding mean and variance; (2) fit of the mixture model to the mixture data; (3) agreement between the mixture data and the CPM prediction; and (4) consistency between the CPM and the mixture model. Because there are four evaluations instead of one, some involving many parameters or dose groups, there are more opportunities to reject statistical hypotheses about dose addition, thus statistical adjustment for multiple comparisons is necessary. These four steps contribute different pieces of information about the consistency of the component and mixture data with the two empirical characteristics of dose additivity. We examine this four-step approach in how it can show empirical support for dose addition as a predictor for an untested mixture in a screening level risk assessment. The decision whether to apply dose addition should be based on all four of those evidentiary pieces as well as toxicological understanding of these chemicals and should include interpretations of the numerical and toxicological issues that arise during the evaluation. This approach is demonstrated with neurotoxicity data on carbamate mixtures.
混合物风险评估通常受到所评估混合物缺乏剂量-反应信息的阻碍,这迫使我们依赖于成分公式,如剂量加和。我们提出了一种用于评估化学混合物数据是否符合剂量加和的四步方法,以支持基于成分的混合物风险评估。遵循美国环保署混合物风险指南(U.S. EPA,2000a,b)中的概念,对于定义明确的混合物(所有成分已知)的毒理学相互作用,是偏离成分加和的明确定义。对于剂量加和的常见方法,EPA 指南确定了三个理想特征,其中最重要的是成分化学物质在毒理学上是相似的。另外两个特征是经验性的:混合物成分的毒性强度是彼此固定比例(在整个感兴趣的剂量范围内),并且剂量加和预测公式中的混合物剂量项,我们称之为组合预测模型(CPM),可以用成分剂量的线性组合来表示。毒性强度成比例的一个必然结果是,成分化学物质必须共享一个共同的剂量-反应模型,其中只有剂量系数取决于化学物质成分。进一步的结果是,混合物数据必须用与成分相同的数学函数(“混合物模型”)来描述,但总混合物剂量有一个独特的系数。混合物的反应是通过使用剂量加和 CPM 从成分剂量-反应曲线中预测出来的,然后将预测结果与观察到的混合物结果进行比较。这四个步骤是为了评估:(1)通过确定 CPM 在均值和方差方面与单一化学模型的匹配程度来评估毒性比例性;(2)评估混合物模型对混合物数据的拟合程度;(3)混合物数据与 CPM 预测的一致性;(4)CPM 与混合物模型的一致性。由于有四个评估,而不是一个,其中一些涉及许多参数或剂量组,因此有更多的机会拒绝关于剂量加和的统计假设,因此需要进行多重比较的统计调整。这四个步骤提供了关于成分和混合物数据与剂量加和的两个经验特征一致性的不同信息。我们将研究这种四步方法如何在筛选水平风险评估中为未测试混合物提供剂量加和作为预测因子的经验支持。是否应用剂量加和的决定应该基于这四个证据以及对这些化学物质的毒理学理解,并应包括在评估过程中出现的数值和毒理学问题的解释。这种方法在氨基甲酸酯混合物的神经毒性数据中得到了验证。