Jarrett Stuart G, Rohrer Bärbel, Perron Nathan R, Beeson Craig, Boulton Michael E
Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, USA.
Methods Mol Biol. 2013;935:227-43. doi: 10.1007/978-1-62703-080-9_16.
Mitochondrial dysfunction and genomic instability are associated with a number of retinal pathologies including age-related macular degeneration, diabetic retinopathy, and glaucoma. Consequences of mitochondrial dysfunction within cells include elevation of the rate of ROS production due to damage of electron transport chain proteins, mitochondrial DNA (mtDNA) damage, and loss of metabolic capacity. Here we introduce the quantitative polymerase chain reaction assay (QPCR) and extracellular flux assay (XF) as powerful techniques to study mitochondrial behavior. The QPCR technique is a gene-specific assay developed to analyze the DNA damage repair response in mitochondrial and nuclear genomes. QPCR has proved particularly valuable for the measurement of oxidative-induced mtDNA damage and kinetics of mtDNA repair. To assess the functional consequence of mitochondrial oxidative damage, real-time changes in cellular bioenergetics of cell monolayers can be measured with a Seahorse Biosciences XF24 analyzer. The advantages and limitations of these procedures will be discussed and detailed methodologies provided with particular emphasis on retinal oxidative stress.
线粒体功能障碍和基因组不稳定与多种视网膜病变相关,包括年龄相关性黄斑变性、糖尿病性视网膜病变和青光眼。细胞内线粒体功能障碍的后果包括由于电子传递链蛋白损伤、线粒体DNA(mtDNA)损伤和代谢能力丧失导致的活性氧(ROS)产生速率升高。在这里,我们介绍定量聚合酶链反应测定法(QPCR)和细胞外通量测定法(XF),作为研究线粒体行为的强大技术。QPCR技术是一种基因特异性测定法,用于分析线粒体和核基因组中的DNA损伤修复反应。QPCR已被证明在测量氧化诱导的mtDNA损伤和mtDNA修复动力学方面特别有价值。为了评估线粒体氧化损伤的功能后果,可以使用Seahorse Biosciences XF24分析仪测量细胞单层的细胞生物能量学的实时变化。将讨论这些方法的优点和局限性,并提供详细的方法,特别强调视网膜氧化应激。