Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19579-83. doi: 10.1073/pnas.1203826109. Epub 2012 Nov 13.
Carbon (C) is one of the candidate light elements proposed to account for the density deficit of the Earth's core. In addition, C significantly affects siderophile and chalcophile element partitioning between metal and silicate and thus the distribution of these elements in the Earth's core and mantle. Derivation of the accretion and core-mantle segregation history of the Earth requires, therefore, an accurate knowledge of the C abundance in the Earth's core. Previous estimates of the C content of the core differ by a factor of ∼20 due to differences in assumptions and methods, and because the metal-silicate partition coefficient of C was previously unknown. Here we use two-phase first-principles molecular dynamics to derive this partition coefficient of C between liquid iron and silicate melt. We calculate a value of 9 ± 3 at 3,200 K and 40 GPa. Using this partition coefficient and the most recent estimates of bulk Earth or mantle C contents, we infer that the Earth's core contains 0.1-0.7 wt% of C. Carbon thus plays a moderate role in the density deficit of the core and in the distribution of siderophile and chalcophile elements during core-mantle segregation processes. The partition coefficients of nitrogen (N), hydrogen, helium, phosphorus, magnesium, oxygen, and silicon are also inferred and found to be in close agreement with experiments and other geochemical constraints. Contents of these elements in the core derived from applying these partition coefficients match those derived by using the cosmochemical volatility curve and geochemical mass balance arguments. N is an exception, indicating its retention in a mantle phase instead of in the core.
碳 (C) 是被提议用于解释地球核心密度亏损的候选轻元素之一。此外,C 显著影响亲铁元素和亲硫元素在金属和硅酸盐之间的分配,从而影响这些元素在地球核心和地幔中的分布。因此,为了推导出地球的吸积和核幔分异历史,需要准确了解地球核心中 C 的丰度。由于假设和方法的不同,以及之前未知 C 的金属-硅酸盐分配系数,之前对核心中 C 含量的估计差异了约 20 倍。在这里,我们使用两相第一性原理分子动力学来推导 C 在液态铁和硅酸盐熔体之间的分配系数。我们在 3200 K 和 40 GPa 的条件下计算得到了 9±3 的值。使用这个分配系数和最近对地球或地幔中 C 总含量的估计,我们推断地球核心含有 0.1-0.7wt%的 C。因此,C 在核心密度亏损以及在核幔分异过程中亲铁元素和亲硫元素的分布中起着重要作用。我们还推导出了氮 (N)、氢、氦、磷、镁、氧和硅的分配系数,并发现它们与实验和其他地球化学约束非常吻合。应用这些分配系数得出的核心中这些元素的含量与使用宇宙化学挥发曲线和地球化学质量平衡论点得出的含量相符。N 是一个例外,这表明它保留在地幔相中而不是核心中。