Suppr超能文献

MDM2和MDMX磷酸化在向p53应激信号传导中的作用

The Roles of MDM2 and MDMX Phosphorylation in Stress Signaling to p53.

作者信息

Chen Jiandong

机构信息

Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA.

出版信息

Genes Cancer. 2012 Mar;3(3-4):274-82. doi: 10.1177/1947601912454733.

Abstract

The p53 tumor suppressor is highly responsive to different physiological stresses such as abnormal cell proliferation, nutrient deprivation, and DNA damage. Distinct signaling mechanisms have evolved to activate p53, which in turn modulate numerous pathways to enhance fitness and survival of the organism. Elucidating the molecular mechanisms of these signaling events is critical for understanding tumor suppression by p53 and development of novel therapeutics. Studies in the past decade have established that MDM2 and MDMX are important targets of signaling input from different pathways. Here, we focus our discussion on MDM2 and MDMX phosphorylation, which is important for p53 activation by DNA damage. Investigations in this area have generated new insight into the inner workings of MDM2 and MDMX and underscore the importance of allosteric communication between different domains in achieving an efficient response to phosphorylation. It is likely that MDM2 and MDMX regulation by phosphorylation will share mechanistic similarities to other signaling hub molecules. Phosphorylation-independent p53 activators such as ARF and ribosomal proteins ultimately achieve the same outcome as phosphorylation, suggesting that they may induce similar changes in the structure and function of MDM2 and MDMX through protein-protein interactions.

摘要

p53肿瘤抑制蛋白对不同的生理应激高度敏感,如异常细胞增殖、营养剥夺和DNA损伤。不同的信号传导机制已经进化以激活p53,而p53反过来又调节众多途径以增强生物体的适应性和存活率。阐明这些信号事件的分子机制对于理解p53的肿瘤抑制作用和开发新型治疗方法至关重要。过去十年的研究表明,MDM2和MDMX是来自不同途径的信号输入的重要靶点。在此,我们将讨论重点放在MDM2和MDMX的磷酸化上,这对于DNA损伤激活p53很重要。该领域的研究对MDM2和MDMX的内部运作产生了新的见解,并强调了不同结构域之间的变构通讯在实现对磷酸化的有效反应中的重要性。MDM2和MDMX的磷酸化调节可能与其他信号枢纽分子具有相似的机制。诸如ARF和核糖体蛋白等不依赖磷酸化的p53激活剂最终与磷酸化达到相同的结果,这表明它们可能通过蛋白质-蛋白质相互作用在MDM2和MDMX的结构和功能上诱导相似的变化。

相似文献

1
The Roles of MDM2 and MDMX Phosphorylation in Stress Signaling to p53.
Genes Cancer. 2012 Mar;3(3-4):274-82. doi: 10.1177/1947601912454733.
2
Mechanism of p53 stabilization by ATM after DNA damage.
Cell Cycle. 2010 Feb 1;9(3):472-8. doi: 10.4161/cc.9.3.10556.
3
MDMX under stress: the MDMX-MDM2 complex as stress signals hub.
Transl Cancer Res. 2016 Dec;5(6):725-732. doi: 10.21037/tcr.2016.12.18.
4
MDM2 promotes ubiquitination and degradation of MDMX.
Mol Cell Biol. 2003 Aug;23(15):5113-21. doi: 10.1128/MCB.23.15.5113-5121.2003.
5
Abnormal MDMX degradation in tumor cells due to ARF deficiency.
Oncogene. 2012 Aug 9;31(32):3721-32. doi: 10.1038/onc.2011.534. Epub 2011 Nov 28.
6
ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage.
EMBO J. 2005 Oct 5;24(19):3411-22. doi: 10.1038/sj.emboj.7600812. Epub 2005 Sep 15.
7
c-Abl phosphorylation of Mdm2 facilitates Mdm2-Mdmx complex formation.
J Biol Chem. 2011 Jan 7;286(1):216-22. doi: 10.1074/jbc.M110.183012. Epub 2010 Nov 16.
10
The p53 orchestra: Mdm2 and Mdmx set the tone.
Trends Cell Biol. 2010 May;20(5):299-309. doi: 10.1016/j.tcb.2010.01.009. Epub 2010 Feb 19.

引用本文的文献

2
Hyperfunction of post-synaptic density protein 95 promotes seizure response in early-stage aβ pathology.
EMBO Rep. 2024 Mar;25(3):1233-1255. doi: 10.1038/s44319-024-00090-0. Epub 2024 Feb 27.
3
MAPPINGS, a tool for network analysis of large phospho-signalling datasets: application to host erythrocyte response to infection.
Curr Res Microb Sci. 2022 Jun 28;3:100149. doi: 10.1016/j.crmicr.2022.100149. eCollection 2022.
4
Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death.
Int J Mol Sci. 2022 Apr 30;23(9):5005. doi: 10.3390/ijms23095005.
5
The MDM2/MDMX/p53 axis in the adaptive stress response.
Transl Cancer Res. 2020 Mar;9(3):1993-1997. doi: 10.21037/tcr.2019.12.89.
6
MDMX under stress: the MDMX-MDM2 complex as stress signals hub.
Transl Cancer Res. 2016 Dec;5(6):725-732. doi: 10.21037/tcr.2016.12.18.
7
MDMX acidic domain inhibits p53 DNA binding in vivo and regulates tumorigenesis.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3368-E3377. doi: 10.1073/pnas.1719090115. Epub 2018 Mar 26.
8
Peli1 Modulates the Subcellular Localization and Activity of Mdmx.
Cancer Res. 2018 Jun 1;78(11):2897-2910. doi: 10.1158/0008-5472.CAN-17-3531. Epub 2018 Mar 9.
9
Inhibition of Mdmx (Mdm4) induces anti-obesity effects.
Oncotarget. 2018 Jan 2;9(7):7282-7297. doi: 10.18632/oncotarget.23837. eCollection 2018 Jan 26.
10
Role of the N-terminal lid in regulating the interaction of phosphorylated MDMX with p53.
Oncotarget. 2017 Dec 1;8(68):112825-112840. doi: 10.18632/oncotarget.22829. eCollection 2017 Dec 22.

本文引用的文献

1
Abnormal MDMX degradation in tumor cells due to ARF deficiency.
Oncogene. 2012 Aug 9;31(32):3721-32. doi: 10.1038/onc.2011.534. Epub 2011 Nov 28.
2
Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination.
Science. 2011 Oct 21;334(6054):376-80. doi: 10.1126/science.1207862.
3
Regulation of MDM2 E3 ligase activity by phosphorylation after DNA damage.
Mol Cell Biol. 2011 Dec;31(24):4951-63. doi: 10.1128/MCB.05553-11. Epub 2011 Oct 10.
4
The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo.
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12001-6. doi: 10.1073/pnas.1102309108. Epub 2011 Jul 5.
5
MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination.
J Biol Chem. 2011 Jul 8;286(27):23725-34. doi: 10.1074/jbc.M110.213868. Epub 2011 May 13.
6
Inhibition of p53 DNA binding function by the MDM2 protein acidic domain.
J Biol Chem. 2011 May 6;286(18):16018-29. doi: 10.1074/jbc.M111.228981. Epub 2011 Mar 17.
8
CKIα ablation highlights a critical role for p53 in invasiveness control.
Nature. 2011 Feb 17;470(7334):409-13. doi: 10.1038/nature09673.
9
UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53.
Nat Med. 2011 Mar;17(3):347-55. doi: 10.1038/nm.2283. Epub 2011 Feb 13.
10
c-Abl phosphorylation of Mdm2 facilitates Mdm2-Mdmx complex formation.
J Biol Chem. 2011 Jan 7;286(1):216-22. doi: 10.1074/jbc.M110.183012. Epub 2010 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验