Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21307-12. doi: 10.1073/pnas.1215689109. Epub 2012 Nov 14.
Choline and trimethylamine (TMA) are small molecules that play central roles in biological processes throughout all kingdoms of life. These ubiquitous metabolites are linked through a single biochemical transformation, the conversion of choline to TMA by anaerobic microorganisms. This metabolic activity, which contributes to methanogenesis and human disease, has been known for over a century but has eluded genetic and biochemical characterization. We have identified a gene cluster responsible for anaerobic choline degradation within the genome of a sulfate-reducing bacterium and verified its function using both a genetic knockout strategy and heterologous expression in Escherichia coli. Bioinformatics and electron paramagnetic resonance (EPR) spectroscopy revealed the involvement of a C-N bond cleaving glycyl radical enzyme in TMA production, which is unprecedented chemistry for this enzyme family. Our discovery provides the predictive capabilities needed to identify choline utilization clusters in numerous bacterial genomes, underscoring the importance and prevalence of this metabolic activity within the human microbiota and the environment.
胆碱和三甲胺(TMA)是在所有生命领域的生物过程中发挥核心作用的小分子。这些普遍存在的代谢物通过单一的生化转化联系在一起,即厌氧微生物将胆碱转化为 TMA。这种代谢活动促进了甲烷生成和人类疾病,已经有一个多世纪的历史,但一直未能进行遗传和生化特征分析。我们在硫酸盐还原菌的基因组中鉴定出了一个负责厌氧胆碱降解的基因簇,并通过遗传敲除策略和在大肠杆菌中的异源表达验证了其功能。生物信息学和电子顺磁共振(EPR)光谱揭示了 C-N 键断裂甘氨酸自由基酶在 TMA 生成中的参与,这对于该酶家族来说是前所未有的化学。我们的发现提供了在许多细菌基因组中识别胆碱利用簇所需的预测能力,强调了这种代谢活动在人类微生物群和环境中的重要性和普遍性。