Suppr超能文献

锌指蛋白 143 转录因子通过上调线粒体呼吸功能障碍中的 GPX1 活性来介导细胞存活。

ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction.

机构信息

Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Cell Death Dis. 2012 Nov 15;3(11):e422. doi: 10.1038/cddis.2012.156.

Abstract

Mitochondrial respiratory dysfunction has intimate relationship with redox regulation. The key mechanism about how the mitochondrial respiration-defective cells survive oxidative stress is still elusive. Here, we report that transcription factor zinc-finger protein 143 (ZNF143) expression and glutathione peroxidase (GPX) activity are markedly increased in the mitochondrial respiratory-defective cells induced by dominant-negative DNA polymerase γ (POLGdn). In this work, investigation of the cellular antioxidant glutathione (GSH) and enzyme GPX activity in the mitochondrial dysfunction revealed the presence of an increased synthesis of GSH through the activation of GCLC (glutamate-cysteine ligase catalytic subunit) and GCLM (glutamate-cysteine ligase regulatory subunit) gene expression, and also a positive upregulation of glutathione peroxidase 1 (GPX1) activity by the transcription factor ZNF143. Significant increase in gene expression of SepSecS, the key enzyme responsible for selenocysteine transfer RNA (tRNA) synthesis, further confirmed the activation of the selenocysteine synthesis pathway. By using both GPX1 and ZNF143 knockdown, we provided insight into the involvement of ZNF143 in promoting GPX1 activity and protecting cells from oxidative damage and cisplatin treatment in the mitochondrial dysfunction. Furthermore, we reported the possible regulation of mitochondrial transcription factor A (TFAM) in the mitochondrial dysfunction. Our findings delineate an important antioxidant survival pathway that allows the mitochondrial-defective cells to survive oxidative stress and cisplatin treatment.

摘要

线粒体呼吸功能障碍与氧化还原调节密切相关。线粒体呼吸缺陷细胞如何在氧化应激下存活的关键机制仍不清楚。在这里,我们报告转录因子锌指蛋白 143(ZNF143)的表达和谷胱甘肽过氧化物酶(GPX)活性在由显性负突变 DNA 聚合酶γ(POLGdn)诱导的线粒体呼吸缺陷细胞中显著增加。在这项工作中,对线粒体功能障碍细胞内抗氧化谷胱甘肽(GSH)和酶 GPX 活性的研究表明,通过激活 GCLC(谷氨酸-半胱氨酸连接酶催化亚基)和 GCLM(谷氨酸-半胱氨酸连接酶调节亚基)基因表达,GSH 的合成增加,并且谷胱甘肽过氧化物酶 1(GPX1)的活性也通过转录因子 ZNF143 被正向上调。参与硒代半胱氨酸 tRNA(tRNA)合成的关键酶 SepSecS 的基因表达显著增加,进一步证实了硒代半胱氨酸合成途径的激活。通过使用 GPX1 和 ZNF143 的敲低,我们深入了解了 ZNF143 在促进 GPX1 活性和保护线粒体功能障碍细胞免受氧化损伤和顺铂治疗中的作用。此外,我们报道了线粒体转录因子 A(TFAM)在线粒体功能障碍中的可能调节作用。我们的发现描绘了一条重要的抗氧化生存途径,使线粒体缺陷细胞能够在氧化应激和顺铂治疗下存活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eba/3542592/8e6ea0d14a48/cddis2012156f1.jpg

相似文献

3
Mitochondrial GPx1 decreases induced but not basal oxidative damage to mtDNA in T47D cells.
Biochem Biophys Res Commun. 2000 Jun 7;272(2):416-22. doi: 10.1006/bbrc.2000.2800.
4
5
Mitochondrial oxidative stress in mice lacking the glutathione peroxidase-1 gene.
Free Radic Biol Med. 2000 Mar 1;28(5):754-66. doi: 10.1016/s0891-5849(00)00161-1.
6
GPx1 knockdown suppresses chondrogenic differentiation of ATDC5 cells through induction of reductive stress.
Acta Biochim Biophys Sin (Shanghai). 2017 Feb 6;49(2):110-118. doi: 10.1093/abbs/gmw125.
7
Glutathione peroxidase 1 protects mitochondria against hypoxia/reoxygenation damage in mouse hearts.
Pflugers Arch. 2010 Jun;460(1):55-68. doi: 10.1007/s00424-010-0811-7. Epub 2010 Mar 20.
10
Cardiac-specific overexpression of dominant-negative CREB leads to increased mortality and mitochondrial dysfunction in female mice.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H2056-68. doi: 10.1152/ajpheart.00394.2010. Epub 2010 Oct 8.

引用本文的文献

1
ZNF143 is a transcriptional regulator of nuclear-encoded mitochondrial genes that acts independently of looping and CTCF.
Mol Cell. 2025 Jan 2;85(1):24-41.e11. doi: 10.1016/j.molcel.2024.11.031. Epub 2024 Dec 20.
3
Transcriptomic profiling of reward and sensory brain areas in perinatal fentanyl exposed juvenile mice.
Neuropsychopharmacology. 2023 Nov;48(12):1724-1734. doi: 10.1038/s41386-023-01639-8. Epub 2023 Jul 3.
5
Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases.
Front Cell Dev Biol. 2022 Sep 14;10:968373. doi: 10.3389/fcell.2022.968373. eCollection 2022.
6
Glutathione Peroxidase GPX1 and Its Dichotomous Roles in Cancer.
Cancers (Basel). 2022 May 23;14(10):2560. doi: 10.3390/cancers14102560.
7
8
Effects of alternative splicing events and transcriptome changes on kidney stone formation.
Urolithiasis. 2022 Apr;50(2):131-140. doi: 10.1007/s00240-021-01293-z. Epub 2022 Jan 8.
9
An Organometallic Gold(I) Bis-N-Heterocyclic Carbene Complex with Multimodal Activity in Ovarian Cancer Cells.
Chemistry. 2020 Dec 1;26(67):15528-15537. doi: 10.1002/chem.202003495. Epub 2020 Nov 3.
10
The Significance of Mitochondrial Dysfunction in Cancer.
Int J Mol Sci. 2020 Aug 5;21(16):5598. doi: 10.3390/ijms21165598.

本文引用的文献

2
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis.
Nature. 2011 Jul 6;475(7354):106-9. doi: 10.1038/nature10189.
3
"Metabolic reprogramming" in ovarian cancer cells resistant to cisplatin.
Curr Cancer Drug Targets. 2011 Feb;11(2):226-35. doi: 10.2174/156800911794328501.
4
Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities.
Antioxid Redox Signal. 2011 Oct 1;15(7):1957-97. doi: 10.1089/ars.2010.3586. Epub 2011 Apr 10.
5
Role of ZNF143 in tumor growth through transcriptional regulation of DNA replication and cell-cycle-associated genes.
Cancer Sci. 2010 Dec;101(12):2538-45. doi: 10.1111/j.1349-7006.2010.01725.x. Epub 2010 Sep 23.
7
The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.
Science. 2009 Jul 17;325(5938):321-5. doi: 10.1126/science.1173755.
8
ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis.
Science. 2008 May 2;320(5876):661-4. doi: 10.1126/science.1156906. Epub 2008 Apr 3.
9
Transcription factor hStaf/ZNF143 is required for expression of the human TFAM gene.
Gene. 2007 Oct 15;401(1-2):145-53. doi: 10.1016/j.gene.2007.07.011. Epub 2007 Jul 21.
10
ZNF143 interacts with p73 and is involved in cisplatin resistance through the transcriptional regulation of DNA repair genes.
Oncogene. 2007 Aug 9;26(36):5194-203. doi: 10.1038/sj.onc.1210326. Epub 2007 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验