Suppr超能文献

植物中(18)O2和(16)O2单向通量的建模。IV:C3植物中导度的作用及其调控规律

Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. IV: role of conductance and laws of its regulation in C3 plants.

作者信息

André Marcel J

机构信息

154 Montée d'Imbert, 04100 Manosque, France.

出版信息

Biosystems. 2013 Aug;113(2):115-26. doi: 10.1016/j.biosystems.2012.11.002. Epub 2013 Jan 11.

Abstract

Numerous studies focus on the measurement of conductances for CO2 transfer in plants and especially on their regulatory effects on photosynthesis. Measurement accuracy is strongly dependent on the model used and on the knowledge of the flow of photochemical energy generated by light in chloroplasts. The only accurate and precise method to quantify the linear electron flux (responsible for the production of reductive energy) is the direct measurement of O2 evolution, by (18)O2 labelling and mass spectrometry. The sharing of this energy between the carboxylation (P) and the oxygenation of photorespiration (PR) depends on the plant specificity factor (Sp) and on the corresponding atmospheric concentrations of CO2 and O2 (André, 2013). The concept of plant specificity factor simplifies the equations of the model. It gives a new expression of the effect of the conductance (g) between atmosphere and chloroplasts. Its quantitative effect on photosynthesis is easy to understand because it intervenes in the ratio of the plant specificity factor (Sp) to the specificity of Rubisco (Sr). Using this 'simple' model with the data of (18)O2 experiments, the calculation of conductance variations in response to CO2 and light was carried out. The good fitting of experimental data of O2 and CO2 exchanges confirms the validity of the simple model. The calculation of conductance variation during the increase of external CO2 concentration reveals a linear law of regulation between external and internal CO2 concentrations. During CO2 variations, the effects of g regulation tend to maintain a higher level of oxygenation (PR) in expense of a better carboxylation (P). Contrary to CO2, the variation of O2 creates a negative feedback effect compatible with a stabilization of atmospheric O2. The regulation of g amplifies this result. The effect of light in combination with CO2 is more complex. Below 800μmolquantam(-2)s(-1) the ratio PR/P is maintained unchangeable in expense of carboxylation efficiency. Above that irradiance value, PR/P increases dramatically. It appears that the saturation curves of photosynthesis under high light could be simply due to the regulation by the conductance g and not by any biochemical or biophysical limitation. In conclusion, the regulatory effect of conductance operates in a way that it preserves the rate of photorespiration. This confirms a positive and protective role of photorespiration at the biochemical, whole plant and atmosphere levels. Since the effects of photorespiration are linked to the properties of Rubisco, they add new arguments for a co-evolution of plant and atmosphere, including the evolution of CO2 conductance.

摘要

众多研究聚焦于植物中二氧化碳转移电导的测量,尤其是其对光合作用的调控作用。测量精度在很大程度上取决于所使用的模型以及对叶绿体中光产生的光化学能流动的了解。量化线性电子通量(负责还原能的产生)的唯一准确且精确的方法是通过(18)O2标记和质谱法直接测量氧气释放。这种能量在羧化作用(P)和光呼吸的氧化作用(PR)之间的分配取决于植物特异性因子(Sp)以及相应的大气中二氧化碳和氧气浓度(安德烈,2013年)。植物特异性因子的概念简化了模型方程。它给出了大气与叶绿体之间电导(g)效应的新表达式。其对光合作用的定量影响易于理解,因为它介入了植物特异性因子(Sp)与核酮糖-1,5-二磷酸羧化酶特异性(Sr)的比值。利用这个“简单”模型和(18)O2实验数据,进行了响应二氧化碳和光照的电导变化计算。氧气和二氧化碳交换的实验数据拟合良好,证实了该简单模型的有效性。外部二氧化碳浓度增加期间电导变化的计算揭示了外部与内部二氧化碳浓度之间的线性调节规律。在二氧化碳变化期间,g调节的作用倾向于以牺牲更好的羧化作用(P)为代价维持较高水平的氧化作用(PR)。与二氧化碳相反,氧气的变化产生了与大气氧气稳定化相容的负反馈效应。g的调节放大了这一结果。光照与二氧化碳共同作用的影响更为复杂。在800μmol量子(-2)秒(-1)以下,PR/P比值以羧化效率为代价保持不变。高于该辐照度值,PR/P急剧增加。看来高光下光合作用的饱和曲线可能仅仅是由于电导g的调节,而不是任何生化或生物物理限制。总之,电导的调节作用以一种保持光呼吸速率的方式发挥作用。这证实了光呼吸在生化、整株植物和大气水平上的积极保护作用。由于光呼吸的作用与核酮糖-1,5-二磷酸羧化酶的特性相关,它们为植物与大气的共同进化,包括二氧化碳电导的进化,增添了新的论据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验