Suppr超能文献

植物中¹⁸O₂和¹⁶O₂单向通量建模:I. 工业化前大气的调节

Modelling ¹⁸O₂ and ¹⁶O₂ unidirectional fluxes in plants: I. regulation of pre-industrial atmosphere.

作者信息

André Marcel J

机构信息

CEA, Direction des Sciences du Vivant - Laboratoire d'Ecophysiologie de la Photosynthèse, CEA Cadarache, 13 108 Saint Paul lez Durance, France.

出版信息

Biosystems. 2011 Feb;103(2):239-51. doi: 10.1016/j.biosystems.2010.10.004. Epub 2010 Oct 13.

Abstract

In closed systems, the O₂) compensation point (Γ₀) was previously defined as the upper limit of O₂ level, at a given CO₂ level, above which plants cannot have positive carbon balance and survive. Studies with ¹⁸O₂ measure the actual O₂ uptake by photorespiration due to the dual function of Rubisco, the enzyme that fixes CO₂ and takes O₂ as an alternative substrate. One-step modelling of CO₂ and O₂ uptakes allows calculating a plant specificity factor (Sp) as the sum of the biochemical specificity of Rubisco and a biophysical specificity, function of the resistance to CO₂ transfer from the atmosphere to Rubisco. The crossing points (Cx, Ox) are defined as CO₂ and O₂ concentrations for which O₂ and CO₂ uptakes are equal. It is observed that: (1) under the preindustrial atmosphere, photorespiration of C3 plants uses as much photochemical energy as photosynthesis, i.e. the Cx and Ox are equal or near the CO₂ and O₂ concentrations of that epoch; (2) contrarily to Γ(C), a Γ₀ does not practically limit the plant growth, i.e. the plant net CO₂ balance is positive up to very high O₂ levels; (3) however, in a closed biosystem, Γ₀ exists; it is not the limit of plant growth, but the equilibrium point between photosynthesis and the opposite respiratory processes; (4) a reciprocal relationship exists between Γ₀ and Γ(C), as unique functions of the respective CO₂ and O₂ concentrations and of Sp, this invalidates some results showing two different functions for Γ₀ and Γ(C), and, consequently, the associated analyses related to greenhouse effects in the past; (5) the pre-industrial atmosphere levels of O₂ and CO₂ are the Γ₀ and Γ(C) of the global bio-system. They are equal to or near the values of Cx and Ox of C3 plants, the majority of land plants in preindustrial period. We assume that the crossing points represent favourable feedback conditions for the biosphere-atmosphere equilibrium and could result from co-evolution of plants-atmosphere-climate. We suggest that the evolution of Rubisco and associated pathways is directed by an optimisation between photosynthesis and photorespiration.

摘要

在封闭系统中,氧气补偿点(Γ₀)先前被定义为在给定二氧化碳水平下氧气水平的上限,高于该上限植物无法实现正碳平衡并存活。利用¹⁸O₂进行的研究测量了由于核酮糖-1,5-二磷酸羧化酶(Rubisco)的双重功能导致的光呼吸对氧气的实际吸收,Rubisco是一种固定二氧化碳并将氧气作为替代底物的酶。对二氧化碳和氧气吸收的一步建模允许计算植物特异性因子(Sp),它是Rubisco的生化特异性与生物物理特异性之和,生物物理特异性是大气中二氧化碳向Rubisco转移阻力的函数。交叉点(Cx,Ox)被定义为氧气和二氧化碳吸收量相等时的二氧化碳和氧气浓度。可以观察到:(1)在工业化前的大气条件下,C3植物的光呼吸消耗的光化学能量与光合作用相当,即Cx和Ox等于或接近该时期的二氧化碳和氧气浓度;(2)与Γ(C)相反,Γ₀实际上并不限制植物生长,即植物净二氧化碳平衡在非常高的氧气水平下仍为正值;(3)然而,在封闭的生物系统中,Γ₀是存在的;它不是植物生长的限制,而是光合作用与相反呼吸过程之间的平衡点;(4)Γ₀和Γ(C)之间存在相互关系,它们分别是各自二氧化碳和氧气浓度以及Sp的独特函数,这使得一些显示Γ₀和Γ(C)具有两种不同功能的结果无效,因此也使过去与温室效应相关的分析无效;(5)工业化前大气中的氧气和二氧化碳水平是全球生物系统的Γ₀和Γ(C)。它们等于或接近工业化前大多数陆地植物C3植物的Cx和Ox值。我们假设交叉点代表了生物圈-大气平衡的有利反馈条件,可能是植物-大气-气候共同进化的结果。我们认为Rubisco及相关途径的进化是由光合作用和光呼吸之间的优化所驱动的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验