Montreal Neurological Institute, Montreal, QC, Canada; Department of Neurol. and Neurosurg., Montreal, QC, Canada; McGill University, Montreal, QC, Canada.
Neuroimage. 2013 Feb 15;67:331-43. doi: 10.1016/j.neuroimage.2012.11.006. Epub 2012 Nov 12.
Recent studies have identified large scale brain networks based on the spatio-temporal structure of spontaneous fluctuations in resting-state fMRI data. It is expected that functional connectivity based on resting-state data is reflective of - but not identical to - the underlying anatomical connectivity. However, which functional connectivity analysis methods reliably predict the network structure remains unclear. Here we tested and compared network connectivity analysis methods by applying them to fMRI resting-state time-series obtained from the human visual cortex. The methods evaluated here are those previously tested against simulated data in Smith et al. (Neuroimage, 2011). To this end, we defined regions within retinotopic visual areas V1, V2, and V3 according to their eccentricity in the visual field, delineating central, intermediate, and peripheral eccentricity regions of interest (ROIs). These ROIs served as nodes in the models we study. We based our evaluation on the "ground-truth", thoroughly studied retinotopically-organized anatomical connectivity in the monkey visual cortex. For each evaluated method, we computed the fractional rate of detecting connections known to exist ("c-sensitivity"), while using a threshold of the 95th percentile of the distribution of interaction magnitudes of those connections not expected to exist. Under optimal conditions - including session duration of 68min, a relatively small network consisting of 9 nodes and artifact-free regression of the global effect - each of the top methods predicted the expected connections with 67-85% c-sensitivity. Correlation methods, including Correlation (Corr; 85%), Regularized Inverse Covariance (ICOV; 84%) and Partial Correlation (PCorr; 81%) performed best, followed by Patel's Kappa (80%), Bayesian Network method PC (BayesNet; 77%), General Synchronization measures (67-77%), and Coherence (CohB; 74%). With decreased session duration, these top methods saw decreases in c-sensitivities, achieving 59-76% for 17min sessions. With a short resting-state fMRI scan of 8.5min, none of the methods predicted the real network well, with Corr (65%) performing best. With increased complexity of the network from 9 to 36 nodes, multivariate methods including PCorr and BayesNet saw a decrease in performance. Artifact-free regression of the global effect increased the c-sensitivity of the top-performing methods. In an overall evaluation across all tests we performed, correlation methods (Corr, ICOV, and PCorr), Patel's Kappa, and BayesNet method PC set themselves somewhat above all other methods. We propose that data-based calibration based on known anatomical connections be integrated into future network studies, in order to maximize sensitivity and reduce false positives.
最近的研究基于静息状态 fMRI 数据中自发波动的时空结构,确定了大规模的大脑网络。预计基于静息状态数据的功能连接反映了 - 但并不等同于 - 潜在的解剖连接。然而,哪种功能连接分析方法能够可靠地预测网络结构尚不清楚。在这里,我们通过将其应用于从人类视觉皮层获得的 fMRI 静息状态时间序列,测试和比较了网络连接分析方法。这里评估的方法是 Smith 等人之前针对模拟数据进行测试的方法。为此,我们根据视野中的偏心度定义了视皮层 V1、V2 和 V3 中的区域,划定了中央、中间和外围的兴趣区域(ROI)。这些 ROI 作为我们研究模型中的节点。我们的评估基于“真实情况”,即对猴子视觉皮层中组织良好的解剖连接进行了深入研究。对于每种评估方法,我们计算了已知存在的连接的分数检测率(“c 敏感性”),同时使用不存在的连接的相互作用幅度分布的第 95 个百分位数作为阈值。在最佳条件下 - 包括 68 分钟的会话持续时间、由 9 个节点组成的相对较小的网络以及无伪影的全局效应回归 - 每种顶级方法的预测预期连接的 c 敏感性均为 67-85%。相关性方法,包括相关性(Corr; 85%)、正则逆协方差(ICOV; 84%)和偏相关性(PCorr; 81%)表现最好,其次是 Patel 的 Kappa(80%)、贝叶斯网络方法 PC(BayesNet; 77%)、一般同步度量(67-77%)和相干性(CohB; 74%)。随着会话持续时间的减少,这些顶级方法的 c 敏感性降低,17 分钟的会话达到 59-76%。对于 8.5 分钟的短静息状态 fMRI 扫描,没有一种方法能够很好地预测真实网络,Corr(65%)表现最好。随着网络从 9 个节点增加到 36 个节点,包括 PCorr 和 BayesNet 在内的多元方法的性能下降。无全局效应伪影的回归增加了顶级方法的 c 敏感性。在我们进行的所有测试的整体评估中,相关性方法(Corr、ICOV 和 PCorr)、Patel 的 Kappa 和 BayesNet 方法 PC 都优于其他所有方法。我们建议在未来的网络研究中整合基于已知解剖连接的数据校准,以最大程度地提高灵敏度并减少假阳性。