Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Neuroimage. 2011 Jun 1;56(3):1426-36. doi: 10.1016/j.neuroimage.2011.02.077. Epub 2011 Mar 3.
Neural activity in mammalian brains exhibits large spontaneous fluctuations whose structure reveals the intrinsic functional connectivity of the brain on many spatial and temporal scales. Between remote brain regions, spontaneous activity is organized into large-scale functional networks. To date, it has remained unclear whether the intrinsic functional connectivity between brain regions scales down to the fine detail of anatomical connections, for example the fine-grained topographic connectivity structure in visual cortex. Here, we show that fMRI signal fluctuations reveal a detailed retinotopically organized functional connectivity structure between the visual field maps of remote areas of the human visual cortex. The structured coherent fluctuations were even preserved in complete darkness when all visual input was removed. While the topographic connectivity structure was clearly visible in within hemisphere connections, the between hemisphere connectivity structure differs for representations along the vertical and horizontal meridian respectively. These results suggest a tight link between spontaneous neural activity and the fine-grained topographic connectivity pattern of the human brain. Thus, intrinsic functional connectivity reflects the detailed connectivity structure of the cortex at a fine spatial scale. It might thus be a valuable tool to complement anatomical studies of the human connectome, which is one of the keys to understand the functioning of the human brain.
哺乳动物大脑中的神经活动表现出较大的自发性波动,其结构揭示了大脑在许多空间和时间尺度上的固有功能连接。在远程脑区之间,自发性活动被组织成大规模的功能网络。迄今为止,仍不清楚脑区之间的固有功能连接是否可以细分为解剖连接的细节,例如视觉皮层中的细粒度拓扑连接结构。在这里,我们表明 fMRI 信号波动揭示了人类视觉皮层远程区域的视野图之间详细的视网膜组织功能连接结构。即使在完全去除所有视觉输入的情况下,当所有视觉输入都被去除时,结构一致的波动仍然被保留下来。虽然在半球内连接中可以清楚地看到拓扑连接结构,但在沿垂直和水平子午线的表示之间,半球间连接结构则不同。这些结果表明自发神经活动与人类大脑的细粒度拓扑连接模式之间存在紧密联系。因此,固有功能连接反映了皮质在精细空间尺度上的详细连接结构。因此,它可能是补充人类连接组解剖研究的有价值工具,这是理解人类大脑功能的关键之一。