Suppr超能文献

动态静息态 fMRI 的神经和代谢基础。

Neural and metabolic basis of dynamic resting state fMRI.

机构信息

iHuman Institute, ShanghaiTech University, Shanghai 201210, China.

出版信息

Neuroimage. 2018 Oct 15;180(Pt B):448-462. doi: 10.1016/j.neuroimage.2017.09.010. Epub 2017 Sep 9.

Abstract

Resting state fMRI (rsfMRI) as a technique showed much initial promise for use in psychiatric and neurological diseases where diagnosis and treatment were difficult. To realize this promise, many groups have moved towards examining "dynamic rsfMRI," which relies on the assumption that rsfMRI measurements on short time scales remain relevant to the underlying neural and metabolic activity. Many dynamic rsfMRI studies have demonstrated differences between clinical or behavioral groups beyond what static rsfMRI measured, suggesting a neurometabolic basis. Correlative studies combining dynamic rsfMRI and other physiological measurements have supported this. However, they also indicate multiple mechanisms and, if using correlation alone, it is difficult to separate cause and effect. Hypothesis-driven studies are needed, a few of which have begun to illuminate the underlying neurometabolic mechanisms that shape observed differences in dynamic rsfMRI. While the number of potential noise sources, potential actual neurometabolic sources, and methodological considerations can seem overwhelming, dynamic rsfMRI provides a rich opportunity in systems neuroscience. Even an incrementally better understanding of the neurometabolic basis of dynamic rsfMRI would expand rsfMRI's research and clinical utility, and the studies described herein take the first steps on that path forward.

摘要

静息态功能磁共振成像 (rsfMRI) 作为一种技术,在诊断和治疗困难的精神和神经疾病中显示出很大的应用前景。为了实现这一承诺,许多研究小组已经转向研究“动态 rsfMRI”,该方法依赖于这样一个假设,即在短时间尺度上进行的 rsfMRI 测量与潜在的神经和代谢活动仍然相关。许多动态 rsfMRI 研究表明,在临床或行为组之间存在差异,超过了静态 rsfMRI 测量的差异,这表明存在神经代谢基础。结合动态 rsfMRI 和其他生理测量的相关研究支持了这一点。然而,它们也表明存在多种机制,如果仅使用相关性,就很难区分因果关系。需要进行假设驱动的研究,其中一些研究已经开始阐明塑造动态 rsfMRI 中观察到的差异的潜在神经代谢机制。虽然潜在的噪声源、潜在的实际神经代谢源以及方法学考虑因素的数量可能看起来令人望而却步,但动态 rsfMRI 为系统神经科学提供了丰富的机会。即使对动态 rsfMRI 的神经代谢基础有更深入的了解,也会扩展 rsfMRI 的研究和临床应用,本文所描述的研究就是朝着这个方向迈出的第一步。

相似文献

1
Neural and metabolic basis of dynamic resting state fMRI.动态静息态 fMRI 的神经和代谢基础。
Neuroimage. 2018 Oct 15;180(Pt B):448-462. doi: 10.1016/j.neuroimage.2017.09.010. Epub 2017 Sep 9.
7
Functional networks and network perturbations in rodents.啮齿动物的功能网络和网络扰动。
Neuroimage. 2017 Dec;163:419-436. doi: 10.1016/j.neuroimage.2017.09.038. Epub 2017 Sep 21.
8
Neurovascular factors in resting-state functional MRI.静息态功能磁共振成像中的神经血管因素。
Neuroimage. 2013 Oct 15;80:339-48. doi: 10.1016/j.neuroimage.2013.04.071. Epub 2013 May 1.

引用本文的文献

本文引用的文献

2
Discovering dynamic brain networks from big data in rest and task.从静息态和任务态大数据中发现动态脑网络。
Neuroimage. 2018 Oct 15;180(Pt B):646-656. doi: 10.1016/j.neuroimage.2017.06.077. Epub 2017 Jun 29.
7
EEG Signatures of Dynamic Functional Network Connectivity States.动态功能网络连接状态的脑电图特征
Brain Topogr. 2018 Jan;31(1):101-116. doi: 10.1007/s10548-017-0546-2. Epub 2017 Feb 22.
10
Mapping how local perturbations influence systems-level brain dynamics.绘制局部扰动如何影响系统级大脑动力学的图谱。
Neuroimage. 2017 Oct 15;160:97-112. doi: 10.1016/j.neuroimage.2017.01.057. Epub 2017 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验