Suppr超能文献

初级运动皮层中的运动表示及其对可泛化的肌电图预测的贡献。

Movement representation in the primary motor cortex and its contribution to generalizable EMG predictions.

机构信息

Dept. of Physiology, Feinberg School of Medicine, Northwestern Univ, Chicago, IL 60611, USA.

出版信息

J Neurophysiol. 2013 Feb;109(3):666-78. doi: 10.1152/jn.00331.2012. Epub 2012 Nov 14.

Abstract

It is well known that discharge of neurons in the primary motor cortex (M1) depends on end-point force and limb posture. However, the details of these relations remain unresolved. With the development of brain-machine interfaces (BMIs), these issues have taken on practical as well as theoretical importance. We examined how the M1 encodes movement by comparing single-neuron and electromyographic (EMG) preferred directions (PDs) and by predicting force and EMGs from multiple neurons recorded during an isometric wrist task. Monkeys moved a cursor from a central target to one of eight peripheral targets by exerting force about the wrist while the forearm was held in one of two postures. We fit tuning curves to both EMG and M1 activity measured during the hold period, from which we computed both PDs and the change in PD between forearm postures (ΔPD). We found a unimodal distribution of these ΔPDs, the majority of which were intermediate between the typical muscle response and an unchanging, extrinsic coordinate system. We also discovered that while most neuron-to-EMG predictions generalized well across forearm postures, end-point force measured in extrinsic coordinates did not. The lack of force generalization was due to musculoskeletal changes with posture. Our results show that the dynamics of most of the recorded M1 signals are similar to those of muscle activity and imply that a BMI designed to drive an actuator with dynamics like those of muscles might be more robust and easier to learn than a BMI that commands forces or movements in external coordinates.

摘要

众所周知,初级运动皮层(M1)中神经元的放电取决于端点力和肢体姿势。然而,这些关系的细节仍未解决。随着脑机接口(BMI)的发展,这些问题不仅具有理论意义,而且具有实际意义。我们通过比较单神经元和肌电图(EMG)的最优方向(PD),以及通过在等长腕部任务期间记录的多个神经元来预测力和 EMG,来研究 M1 如何编码运动。猴子通过在施加力的同时将光标从中央目标移动到八个外围目标之一,从而使手腕移动,同时前臂保持在两种姿势之一。我们拟合了在保持期测量的 EMG 和 M1 活动的调谐曲线,从中我们计算了 PD 和前臂姿势之间 PD 的变化(ΔPD)。我们发现这些 ΔPD 的分布呈单峰分布,其中大多数位于典型肌肉反应和不变的外部坐标系之间。我们还发现,虽然大多数神经元到 EMG 的预测在整个前臂姿势中都很好地概括,但以外部坐标测量的端点力却没有。缺乏力概括是由于姿势引起的肌肉骨骼变化。我们的结果表明,记录的大多数 M1 信号的动力学与肌肉活动相似,这意味着设计为驱动具有类似于肌肉的动力学的执行器的 BMI 可能比命令外部坐标中的力或运动的 BMI 更稳健且更容易学习。

相似文献

1
Movement representation in the primary motor cortex and its contribution to generalizable EMG predictions.
J Neurophysiol. 2013 Feb;109(3):666-78. doi: 10.1152/jn.00331.2012. Epub 2012 Nov 14.
2
A muscle-activity-dependent gain between motor cortex and EMG.
J Neurophysiol. 2019 Jan 1;121(1):61-73. doi: 10.1152/jn.00329.2018. Epub 2018 Oct 31.
4
Muscle and movement representations in the primary motor cortex.
Science. 1999 Sep 24;285(5436):2136-9. doi: 10.1126/science.285.5436.2136.
5
Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
J Neurophysiol. 2005 Oct;94(4):2353-78. doi: 10.1152/jn.00989.2004. Epub 2005 May 11.
6
Direction of action is represented in the ventral premotor cortex.
Nat Neurosci. 2001 Oct;4(10):1020-5. doi: 10.1038/nn726.
7
Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons.
J Neurophysiol. 2007 Jan;97(1):70-82. doi: 10.1152/jn.00544.2006. Epub 2006 Oct 11.
9
Primary motor cortical discharge during force field adaptation reflects muscle-like dynamics.
J Neurophysiol. 2013 Aug;110(3):768-83. doi: 10.1152/jn.00109.2012. Epub 2013 May 8.

引用本文的文献

1
Electrode Arrays for Detecting and Modulating Deep Brain Neural Information in Primates: A Review.
Cyborg Bionic Syst. 2025 May 2;6:0249. doi: 10.34133/cbsystems.0249. eCollection 2025.
2
Less is more: selection from a small set of options improves BCI velocity control.
J Neural Eng. 2025 Mar 17;22(2). doi: 10.1088/1741-2552/adbcd9.
3
Dynamic lateralization in contralateral-projecting corticospinal neurons during motor learning.
iScience. 2024 Oct 1;27(11):111078. doi: 10.1016/j.isci.2024.111078. eCollection 2024 Nov 15.
4
A posture subspace in primary motor cortex.
bioRxiv. 2024 Aug 12:2024.08.12.607361. doi: 10.1101/2024.08.12.607361.
5
Preparatory activity and the expansive null-space.
Nat Rev Neurosci. 2024 Apr;25(4):213-236. doi: 10.1038/s41583-024-00796-z. Epub 2024 Mar 5.
6
9
The Representation of Finger Movement and Force in Human Motor and Premotor Cortices.
eNeuro. 2020 Aug 17;7(4). doi: 10.1523/ENEURO.0063-20.2020. Print 2020 Jul/Aug.
10
Area 2 of primary somatosensory cortex encodes kinematics of the whole arm.
Elife. 2020 Jan 23;9:e48198. doi: 10.7554/eLife.48198.

本文引用的文献

1
Restoration of grasp following paralysis through brain-controlled stimulation of muscles.
Nature. 2012 May 17;485(7398):368-71. doi: 10.1038/nature10987.
2
Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5802-6. doi: 10.1109/IEMBS.2011.6091436.
3
Statistical assessment of the stability of neural movement representations.
J Neurophysiol. 2011 Aug;106(2):764-74. doi: 10.1152/jn.00626.2010. Epub 2011 May 25.
4
Volitional control of single cortical neurons in a brain-machine interface.
J Neural Eng. 2011 Apr;8(2):025017. doi: 10.1088/1741-2560/8/2/025017. Epub 2011 Mar 24.
5
The curvature and variability of wrist and arm movements.
Exp Brain Res. 2010 May;203(1):63-73. doi: 10.1007/s00221-010-2210-x. Epub 2010 Apr 11.
6
Kinetic trajectory decoding using motor cortical ensembles.
IEEE Trans Neural Syst Rehabil Eng. 2009 Oct;17(5):487-96. doi: 10.1109/TNSRE.2009.2029313. Epub 2009 Aug 7.
7
Emergence of a stable cortical map for neuroprosthetic control.
PLoS Biol. 2009 Jul;7(7):e1000153. doi: 10.1371/journal.pbio.1000153. Epub 2009 Jul 21.
9
Offline decoding of end-point forces using neural ensembles: application to a brain-machine interface.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):254-62. doi: 10.1109/TNSRE.2009.2023290. Epub 2009 Jun 2.
10
Stability of output effects from motor cortex to forelimb muscles in primates.
J Neurosci. 2009 Feb 11;29(6):1915-27. doi: 10.1523/JNEUROSCI.4831-08.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验