Suppr超能文献

运动皮层与肌电图之间的肌肉活动相关增益。

A muscle-activity-dependent gain between motor cortex and EMG.

机构信息

Department of Biomedical Engineering, Northwestern University , Evanston, Illinois.

Department of Physiology, Northwestern University , Chicago, Illinois.

出版信息

J Neurophysiol. 2019 Jan 1;121(1):61-73. doi: 10.1152/jn.00329.2018. Epub 2018 Oct 31.

Abstract

Whether one is delicately placing a contact lens on the surface of the eye or lifting a heavy weight from the floor, the motor system must produce a wide range of forces under different dynamical loads. How does the motor cortex, with neurons that have a limited activity range, function effectively under these widely varying conditions? In this study, we explored the interaction of activity in primary motor cortex (M1) and muscles (electromyograms, EMGs) of two male rhesus monkeys for wrist movements made during three tasks requiring different dynamical loads and forces. Despite traditionally providing adequate predictions in single tasks, in our experiments, a single linear model failed to account for the relation between M1 activity and EMG across conditions. However, a model with a gain parameter that increased with the target force remained accurate across forces and dynamical loads. Surprisingly, this model showed that a greater proportion of EMG changes were explained by the nonlinear gain than the linear mapping from M1. In addition to its theoretical implications, the strength of this nonlinearity has important implications for brain-computer interfaces (BCIs). If BCI decoders are to be used to control movement dynamics (including interaction forces) directly, they will need to be nonlinear and include training data from broad data sets to function effectively across tasks. Our study reinforces the need to investigate neural control of movement across a wide range of conditions to understand its basic characteristics as well as translational implications. NEW & NOTEWORTHY We explored the motor cortex-to-electromyogram (EMG) mapping across a wide range of forces and loading conditions, which we found to be highly nonlinear. A greater proportion of EMG was explained by a nonlinear gain than a linear mapping. This nonlinearity allows motor cortex to control the wide range of forces encountered in the real world. These results unify earlier observations and inform the next-generation brain-computer interfaces that will control movement dynamics and interaction forces.

摘要

无论是小心翼翼地将隐形眼镜放在眼睛表面,还是从地板上提起重物,运动系统都必须在不同的动力负荷下产生广泛的力量。运动皮层中的神经元活动范围有限,它如何在这些变化多端的条件下有效运作?在这项研究中,我们探索了两只雄性恒河猴在进行三种需要不同动力负荷和力量的手腕运动时,运动皮层(M1)和肌肉(肌电图,EMG)的活动相互作用。尽管传统的线性模型在单一任务中提供了足够的预测,但在我们的实验中,该模型无法解释 M1 活动和 EMG 在不同条件下的关系。然而,一个具有随目标力增加的增益参数的模型在各种力和动力负荷下仍然准确。令人惊讶的是,该模型表明,非线性增益比 M1 的线性映射更能解释更大比例的 EMG 变化。除了理论意义外,这种非线性的强度对脑机接口(BCI)也有重要的意义。如果 BCI 解码器要用于直接控制运动动力学(包括交互力),它们将需要是非线性的,并包含来自广泛数据集的训练数据,以便在任务之间有效地运行。我们的研究强调了需要在广泛的条件下研究运动的神经控制,以了解其基本特征及其转化意义。新的和值得注意的是,我们探索了运动皮层到肌电图(EMG)的映射在广泛的力量和加载条件下,我们发现这是高度非线性的。非线性增益比线性映射更能解释更大比例的 EMG。这种非线性使运动皮层能够控制现实世界中遇到的广泛的力。这些结果统一了早期的观察结果,并为将控制运动动力学和交互力的下一代脑机接口提供信息。

相似文献

1
A muscle-activity-dependent gain between motor cortex and EMG.
J Neurophysiol. 2019 Jan 1;121(1):61-73. doi: 10.1152/jn.00329.2018. Epub 2018 Oct 31.
2
Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
J Neurophysiol. 2005 Oct;94(4):2353-78. doi: 10.1152/jn.00989.2004. Epub 2005 May 11.
3
Movement representation in the primary motor cortex and its contribution to generalizable EMG predictions.
J Neurophysiol. 2013 Feb;109(3):666-78. doi: 10.1152/jn.00331.2012. Epub 2012 Nov 14.
6
Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons.
J Neurophysiol. 2007 Jan;97(1):70-82. doi: 10.1152/jn.00544.2006. Epub 2006 Oct 11.
7
Stability of output effects from motor cortex to forelimb muscles in primates.
J Neurosci. 2009 Feb 11;29(6):1915-27. doi: 10.1523/JNEUROSCI.4831-08.2009.
8
Adaptive neuron-to-EMG decoder training for FES neuroprostheses.
J Neural Eng. 2016 Aug;13(4):046009. doi: 10.1088/1741-2560/13/4/046009. Epub 2016 Jun 1.
9
Primary motor cortical discharge during force field adaptation reflects muscle-like dynamics.
J Neurophysiol. 2013 Aug;110(3):768-83. doi: 10.1152/jn.00109.2012. Epub 2013 May 8.
10
Motor cortex single-neuron and population contributions to compensation for multiple dynamic force fields.
J Neurophysiol. 2015 Jan 15;113(2):487-508. doi: 10.1152/jn.00094.2014. Epub 2014 Oct 22.

引用本文的文献

1
Investigating the benefits of artificial neural networks over linear approaches to BMI decoding.
J Neural Eng. 2025 Jun 27;22(3):036050. doi: 10.1088/1741-2552/ade568.
2
Pseudo-linear summation explains neural geometry of multi-finger movements in human premotor cortex.
Nat Commun. 2025 May 30;16(1):5008. doi: 10.1038/s41467-025-59039-z.
3
Intrinsic properties of spinal motoneurons degrade ankle torque control in humans.
J Physiol. 2025 Apr;603(8):2443-2463. doi: 10.1113/JP287446. Epub 2025 Mar 28.
5
Using transient, effector-specific neural responses to gate decoding for brain-computer interfaces.
J Neural Eng. 2025 Feb 11;22(1):016036. doi: 10.1088/1741-2552/adaa1f.
8
Dissociative and prioritized modeling of behaviorally relevant neural dynamics using recurrent neural networks.
Nat Neurosci. 2024 Oct;27(10):2033-2045. doi: 10.1038/s41593-024-01731-2. Epub 2024 Sep 6.
10
Preparatory activity and the expansive null-space.
Nat Rev Neurosci. 2024 Apr;25(4):213-236. doi: 10.1038/s41583-024-00796-z. Epub 2024 Mar 5.

本文引用的文献

1
Machine Learning for Neural Decoding.
eNeuro. 2020 Aug 31;7(4). doi: 10.1523/ENEURO.0506-19.2020. Print 2020 Jul/Aug.
2
Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response.
Neuron. 2018 Feb 21;97(4):953-966.e8. doi: 10.1016/j.neuron.2018.01.004. Epub 2018 Feb 1.
3
Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex.
Neuron. 2017 Aug 2;95(3):683-696.e11. doi: 10.1016/j.neuron.2017.06.042. Epub 2017 Jul 20.
4
Perspectives on classical controversies about the motor cortex.
J Neurophysiol. 2017 Sep 1;118(3):1828-1848. doi: 10.1152/jn.00795.2016. Epub 2017 Jun 14.
5
Dynamic range adaptation in primary motor cortical populations.
Elife. 2017 Apr 18;6:e21409. doi: 10.7554/eLife.21409.
7
The Serotonergic System Tracks the Outcomes of Actions to Mediate Short-Term Motor Learning.
Cell. 2016 Nov 3;167(4):933-946.e20. doi: 10.1016/j.cell.2016.09.055. Epub 2016 Oct 27.
8
Restoring cortical control of functional movement in a human with quadriplegia.
Nature. 2016 May 12;533(7602):247-50. doi: 10.1038/nature17435. Epub 2016 Apr 13.
9
The basal ganglia: from motor commands to the control of vigor.
Curr Opin Neurobiol. 2016 Apr;37:158-166. doi: 10.1016/j.conb.2016.02.005. Epub 2016 Mar 21.
10
Divisive gain modulation of motoneurons by inhibition optimizes muscular control.
J Neurosci. 2015 Feb 25;35(8):3711-23. doi: 10.1523/JNEUROSCI.3899-14.2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验