Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.
Chemphyschem. 2013 Mar 18;14(4):817-26. doi: 10.1002/cphc.201200695. Epub 2012 Nov 19.
The combined effect of thermal fluctuations and quantum mechanical motion on the HCl(H2O)4 cluster is studied at different temperatures. Two conformations of this cluster are investigated: the ringlike structure that involves an undissociated HCl molecule (UD) and the contact ion pair (CIP), which involves the dissociated acid, Cl(-), and H3O(+). The UD structure is affected by thermal and quantum fluctuations in a similar way. The hydrogen-bond network is destabilized, and this results in ring expansion and proton orientational rearrangements, though the thermal excitation prevails over the quantum effects at high temperature, while the zero-point motion dominates in the low-temperature regime, as expected. In contrast, the thermal and quantum fluctuations exert competing effects on the CIP structure. At high temperature one of the hydrogen bonds accepted by Cl(-) breaks, and this results in undercoordination of the Cl site, which leads to proton transfer along the fluxional Cl(-)···H3O(+) hydrogen bond and formation of molecular HCl. Thus, thermal fluctuations counteract acid dissociation and thus ion-pair formation. At low temperature however, the decreasing thermal excitations facilitate recovery of the full hydrogen-bond network, which pushes the proton away from the Cl site and thus leads to acid dissociation, which characterizes the equilibrium structure. On the other hand, quantum mechanical fluctuations, which destabilize the hydrogen bonds supporting the Cl(-) ion and pull the proton back towards the undissociated limit, become of overriding importance in the low-temperature limit. As a result, the subtle balance between the two trends enables temperature-dependent "low-barrier hydrogen bonding" and establishes a centered hydrogen bond, H2O···H(+)···Cl(-), at intermediate temperatures.
研究了不同温度下热涨落和量子力学运动对 HCl(H2O)4 团簇的综合影响。研究了该团簇的两种构象:涉及未离解 HCl 分子(UD)的环状结构和涉及离解酸 Cl(-)和 H3O(+)的接触离子对(CIP)。UD 结构受到热和量子涨落的类似影响。氢键网络失稳,导致环扩张和质子取向重排,尽管高温下热激发占主导地位,而低温下零点运动占主导地位,这是预期的。相比之下,热和量子涨落对 CIP 结构产生竞争影响。在高温下,Cl(-)接受的一个氢键断裂,导致 Cl 位配位不足,导致质子沿易变的 Cl(-)···H3O(+)氢键转移,并形成分子 HCl。因此,热涨落会抵消酸解离从而阻止离子对的形成。然而,在低温下,热激发的减少有助于恢复完整的氢键网络,将质子推离 Cl 位,从而导致酸解离,这是平衡结构的特征。另一方面,量子力学涨落会使支持 Cl(-)离子的氢键失稳,并将质子拉回未离解极限,在低温极限下变得至关重要。因此,这两种趋势之间的微妙平衡使温度依赖的“低势垒氢键”成为可能,并在中间温度建立了一个居中的氢键,H2O···H(+)···Cl(-)。