Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA.
J Am Med Inform Assoc. 2013 May 1;20(3):420-6. doi: 10.1136/amiajnl-2012-001119. Epub 2012 Nov 17.
Medication safety requires that each drug be monitored throughout its market life as early detection of adverse drug reactions (ADRs) can lead to alerts that prevent patient harm. Recently, electronic medical records (EMRs) have emerged as a valuable resource for pharmacovigilance. This study examines the use of retrospective medication orders and inpatient laboratory results documented in the EMR to identify ADRs.
Using 12 years of EMR data from Vanderbilt University Medical Center (VUMC), we designed a study to correlate abnormal laboratory results with specific drug administrations by comparing the outcomes of a drug-exposed group and a matched unexposed group. We assessed the relative merits of six pharmacovigilance measures used in spontaneous reporting systems (SRSs): proportional reporting ratio (PRR), reporting OR (ROR), Yule's Q (YULE), the χ(2) test (CHI), Bayesian confidence propagation neural networks (BCPNN), and a gamma Poisson shrinker (GPS).
We systematically evaluated the methods on two independently constructed reference standard datasets of drug-event pairs. The dataset of Yoon et al contained 470 drug-event pairs (10 drugs and 47 laboratory abnormalities). Using VUMC's EMR, we created another dataset of 378 drug-event pairs (nine drugs and 42 laboratory abnormalities). Evaluation on our reference standard showed that CHI, ROR, PRR, and YULE all had the same F score (62%). When the reference standard of Yoon et al was used, ROR had the best F score of 68%, with 77% precision and 61% recall.
Results suggest that EMR-derived laboratory measurements and medication orders can help to validate previously reported ADRs, and detect new ADRs.
药物安全性要求在药物整个生命周期内进行监测,因为早期发现药物不良反应(ADR)可以及时发出警报,从而防止患者受到伤害。最近,电子病历(EMR)已成为药物警戒的宝贵资源。本研究通过查看 EMR 中记录的回顾性用药医嘱和住院实验室结果,来确定药物不良反应。
我们利用范德堡大学医学中心(VUMC)的 12 年 EMR 数据,设计了一项研究,通过比较药物暴露组和匹配的未暴露组的结果,来确定实验室异常结果与特定药物给药之间的相关性。我们评估了用于自发报告系统(SRS)的六种药物警戒措施的相对优点:比例报告比(PRR)、报告比值比(ROR)、尤勒氏 Q(YULE)、卡方检验(CHI)、贝叶斯置信传播神经网络(BCPNN)和伽马泊松收缩器(GPS)。
我们在两个独立构建的药物-事件对参考标准数据集上系统地评估了这些方法。Yoon 等人的数据集包含 470 个药物-事件对(10 种药物和 47 种实验室异常)。我们利用 VUMC 的 EMR 创建了另一个包含 378 个药物-事件对(9 种药物和 42 种实验室异常)的数据集。对参考标准的评估表明,CHI、ROR、PRR 和 YULE 的 F 分数(62%)相同。当使用 Yoon 等人的参考标准时,ROR 的 F 分数最佳,为 68%,具有 77%的精度和 61%的召回率。
结果表明,EMR 衍生的实验室测量值和用药医嘱可帮助验证先前报告的药物不良反应,并发现新的药物不良反应。