文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新型鼠源树突状细胞系:树突状细胞研究的有力辅助工具。

Novel murine dendritic cell lines: a powerful auxiliary tool for dendritic cell research.

机构信息

Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne Epalinges, Switzerland.

出版信息

Front Immunol. 2012 Nov 7;3:331. doi: 10.3389/fimmu.2012.00331. eCollection 2012.


DOI:10.3389/fimmu.2012.00331
PMID:23162549
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3491238/
Abstract

Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.

摘要

体外研究有助于发现、筛选和初步实验,通常先于体内研究。几项技术难题使树突状细胞(DC)的研究极具挑战性,包括体内 DC 频率低、彻底分离的要求和 DC 体外易损性。关键是,目前还没有被广泛接受的人源或鼠源 DC 系,体外 DC 研究系统也有限。在这项研究中,我们报告了新型鼠源 DC 系 MutuDC 的产生,源自脾 CD8α 常规 DC(cDC)肿瘤的培养。通过与正常 WT 脾 cDC 亚群的直接比较,我们描述了 MutuDC 系的表型和功能特征,并表明它们保留了体内天然对应物脾 CD8α cDC 的所有主要特征。这些特征包括表面标记物 Clec9A、DEC205 和 CD24 的表达、对 TLR3 和 TLR9 但不是 TLR7 刺激的阳性反应、激活时细胞因子和趋化因子的分泌以及交叉呈递能力。除了与正常脾 CD8α cDC 非常相似之外,一个主要的优势是 MutuDC 系的易于衍生和维持,使用标准的培养基和条件,重要的是无需向培养基中添加补充生长因子或成熟诱导刺激物。此外,已经成功获得了经过基因修饰的 MutuDC 系,无论是通过慢病毒转导还是通过源自基因修饰小鼠的 DC 肿瘤的培养。鉴于目前缺乏稳定和功能性的 DC 系,这些新型鼠源 DC 系有可能成为 DC 研究的重要辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/56a1750ed465/fimmu-03-00331-a006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/dcf3e7b16ed5/fimmu-03-00331-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/cb85731c1726/fimmu-03-00331-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/dd16cdb46316/fimmu-03-00331-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/4d1819b7438d/fimmu-03-00331-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/31026c0519b6/fimmu-03-00331-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/3ed652137bc0/fimmu-03-00331-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/777580c41891/fimmu-03-00331-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/af56a0887ef4/fimmu-03-00331-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/c6ac584ffaf9/fimmu-03-00331-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/f5ee374ae5c1/fimmu-03-00331-a001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/b534e9010e35/fimmu-03-00331-a002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/d347ee550e45/fimmu-03-00331-a003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/476d61792c34/fimmu-03-00331-a004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/a909f17fff0f/fimmu-03-00331-a005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/56a1750ed465/fimmu-03-00331-a006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/dcf3e7b16ed5/fimmu-03-00331-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/cb85731c1726/fimmu-03-00331-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/dd16cdb46316/fimmu-03-00331-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/4d1819b7438d/fimmu-03-00331-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/31026c0519b6/fimmu-03-00331-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/3ed652137bc0/fimmu-03-00331-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/777580c41891/fimmu-03-00331-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/af56a0887ef4/fimmu-03-00331-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/c6ac584ffaf9/fimmu-03-00331-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/f5ee374ae5c1/fimmu-03-00331-a001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/b534e9010e35/fimmu-03-00331-a002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/d347ee550e45/fimmu-03-00331-a003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/476d61792c34/fimmu-03-00331-a004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/a909f17fff0f/fimmu-03-00331-a005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41e/3491238/56a1750ed465/fimmu-03-00331-a006.jpg

相似文献

[1]
Novel murine dendritic cell lines: a powerful auxiliary tool for dendritic cell research.

Front Immunol. 2012-11-7

[2]
Establishment and Characterization of a Functionally Competent Type 2 Conventional Dendritic Cell Line.

Front Immunol. 2018-8-24

[3]
Antigen presentation capacity and cytokine production by murine splenic dendritic cell subsets upon Salmonella encounter.

J Immunol. 2002-7-1

[4]
Large T Antigen-Specific Cytotoxic T Cells Protect Against Dendritic Cell Tumors through Perforin-Mediated Mechanisms Independent of CD4 T Cell Help.

Front Immunol. 2014-7-17

[5]
Differential production of inflammatory chemokines by murine dendritic cell subsets.

Immunobiology. 2004

[6]
Temporal regulation of interleukin-12p70 (IL-12p70) and IL-12-related cytokines in splenic dendritic cell subsets during Leishmania donovani infection.

Infect Immun. 2008-1

[7]
Disparate ability of murine CD8alpha- and CD8alpha+ dendritic cell subsets to traverse endothelium is not determined by differential CD11b expression.

Immunology. 2004-11

[8]
MCSF drives regulatory DC development in stromal co-cultures supporting hematopoiesis.

BMC Immunol. 2018-6-26

[9]
Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by PolyIC in vivo.

PLoS One. 2011-6-2

[10]
Pathogen sensors and chemokine receptors in dendritic cell subsets.

Vaccine. 2012-11-8

引用本文的文献

[1]
Langerhans cells drive Tfh and B cell responses independent of canonical cytokine signals.

Front Immunol. 2025-7-18

[2]
Natriuretic peptides as novel regulators of dendritic cells-mediated inflammation.

Cell Mol Life Sci. 2025-7-11

[3]
SMRT-depleted conventional DCs maintain inflammation despite lower glycolysis via mTOR signalling and succinate oxidation.

NPJ Metab Health Dis. 2024-12-4

[4]
Dendritic cell targeting in lymph nodes with modular adapters boosts HAdV5 and HC-HAdV5 tumor vaccination by co-secretion of IL-2v and IL-21.

Mol Ther Oncol. 2025-4-14

[5]
DHX15 inhibits mouse APOBEC3 deamination.

PLoS Pathog. 2025-4-1

[6]
Heparanase, a host gene that potently restricts retrovirus transcription.

mBio. 2025-4-9

[7]
Langerhans Cells Drive Tfh and B Cell Responses Independent of Canonical Cytokine Signals.

bioRxiv. 2025-2-19

[8]
VSV drives CD8 T cell-mediated tumour regression through infection of both cancer and non-cancer cells.

Nat Commun. 2024-11-15

[9]
Mouse cytomegalovirus lacking sgg1 shows reduced import into the salivary glands.

J Gen Virol. 2024-8

[10]
Card9 and MyD88 differentially regulate Th17 immunity to the commensal yeast in the murine skin.

bioRxiv. 2024-7-16

本文引用的文献

[1]
Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by PolyIC in vivo.

PLoS One. 2011-6-2

[2]
Andromeda: a peptide search engine integrated into the MaxQuant environment.

J Proteome Res. 2011-2-22

[3]
Found in translation: the human equivalent of mouse CD8+ dendritic cells.

J Exp Med. 2010-5-31

[4]
Factors determining the spontaneous activation of splenic dendritic cells in culture.

Innate Immun. 2010-5-25

[5]
Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells.

J Exp Med. 2010-5-17

[6]
The CD8+ dendritic cell subset.

Immunol Rev. 2010-3

[7]
Quantitative proteomics reveals subset-specific viral recognition in dendritic cells.

Immunity. 2010-2-18

[8]
Isolation of dendritic cells.

Curr Protoc Immunol. 2009-8

[9]
Generation of murine growth factor-dependent long-term dendritic cell lines to investigate host-parasite interactions.

Methods Mol Biol. 2009

[10]
Dendritic cell homeostasis.

Blood. 2009-4-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索