Tuor Meret, Stappers Mark H T, Ruchti Fiorella, Desgardin Alice, Sparber Florian, Orr Selinda J, Gow Neil A R, LeibundGut-Landmann Salomé
Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland.
Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
bioRxiv. 2024 Jul 16:2024.07.12.603211. doi: 10.1101/2024.07.12.603211.
The fungal community of the skin microbiome is dominated by a single genus, . Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of and induce dendritic cell activation , while only Dectin-2 is required for Th17 activation during experimental skin colonization . In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.
皮肤微生物群的真菌群落由单一属主导。除了在宿主界面的共生生活方式外,这种共生酵母还与人类和宠物动物的多种炎症性皮肤病有关。抗真菌17型免疫维持稳定的定植。然而,驱动Th17对其作出反应的机制仍不清楚。在这里,我们表明C型凝集素受体Mincle、Dectin-1和Dectin-2识别其细胞壁中的保守模式并诱导树突状细胞活化,而在实验性皮肤定植期间Th17活化仅需要Dectin-2。相比之下,在这种情况下Toll样受体识别是多余的。相反,通过MyD88发出信号的炎性IL-1家族细胞因子也以T细胞内在方式参与Th17活化。综上所述,我们描述了有助于针对皮肤真菌微生物群中最丰富成员产生保护性免疫的途径。这些知识有助于理解屏障免疫及其由共生菌进行的调节,并且考虑到异常免疫反应与严重皮肤病理的关联,这是相关的。