Suppr超能文献

使用一维和二维光谱学定量跃迁偶极强度,通过激子离域识别分子结构:在α-螺旋中的应用。

Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: application to α-helices.

机构信息

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA.

出版信息

J Chem Phys. 2012 Nov 14;137(18):184202. doi: 10.1063/1.4764861.

Abstract

Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I(') band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D(2), which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D(2). When taking into account the angle of the amide I(') transition dipole vector with respect to the helix axis, our measurements indicate that the amide I(') vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine.

摘要

振动和电子跃迁偶极子强度通常是研究分子结构的良好探针,尤其是在发色团的激子耦合体系中。除非知道浓度,否则无法通过线性光谱确定跃迁偶极子强度,而在许多情况下,浓度是未知的。在本文中,我们报告了一种从线性吸收和二维红外光谱测量跃迁偶极子强度的简单方法,该方法不需要知道浓度。我们的方法在几个模型化合物上进行了测试,并应用于多肽的酰胺 I'带,该多肽在溶液温度调制下处于无规卷曲和α-螺旋构象。仅通过线性光谱通常很难将多肽和蛋白质的二级结构自信地分配给无规卷曲或α-螺旋,因为它们在相同的频率范围内吸收。我们发现无规卷曲状态的跃迁偶极子强度为 0.12 ± 0.013 D(2),与单个肽单元相似,表明无规卷曲的振动模式定域在单个肽单元上。在α-螺旋中,跃迁偶极子强度的下限为 0.26 ± 0.03 D(2)。当考虑酰胺 I'跃迁偶极子矢量相对于螺旋轴的角度时,我们的测量结果表明,在α-螺旋中,酰胺 I'振动模式在至少 3.5 个残基上离域。因此,可以根据激子离域通过其对跃迁偶极子强度的影响来自信地分配二级结构。我们的方法将特别适用于动力学演化系统、分子构象重叠的系统以及其他难以确定浓度的情况。

相似文献

2
Not All β-Sheets Are the Same: Amyloid Infrared Spectra, Transition Dipole Strengths, and Couplings Investigated by 2D IR Spectroscopy.
J Phys Chem B. 2017 Sep 28;121(38):8935-8945. doi: 10.1021/acs.jpcb.7b06826. Epub 2017 Sep 19.
5
Amide-I characteristics of helical β-peptides by linear infrared measurement and computations.
J Phys Chem B. 2014 Jan 9;118(1):94-106. doi: 10.1021/jp4095936. Epub 2013 Dec 23.
6
Influence of the nonlinearity and dipole strength on the amide I band of protein alpha-helices.
J Chem Phys. 2005 Dec 15;123(23):234909. doi: 10.1063/1.2138705.
7
Vibrational-exciton couplings for the amide I, II, III, and A modes of peptides.
J Phys Chem B. 2007 Sep 20;111(37):11032-46. doi: 10.1021/jp070369b. Epub 2007 Aug 29.
8
Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.
J Am Chem Soc. 2009 Mar 11;131(9):3385-91. doi: 10.1021/ja8094922.
9
Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
J Phys Chem B. 2007 Feb 22;111(7):1834-45. doi: 10.1021/jp0666840. Epub 2007 Jan 26.
10
Amide I two-dimensional infrared spectroscopy of proteins.
Acc Chem Res. 2008 Mar;41(3):432-41. doi: 10.1021/ar700188n. Epub 2008 Feb 21.

引用本文的文献

1
Transition Dipole Strength as a Quantitative Tool for Protein Secondary Structure Analysis.
J Phys Chem B. 2025 Aug 21;129(33):8382-8391. doi: 10.1021/acs.jpcb.5c04203. Epub 2025 Aug 6.
2
Refining Structural Analysis of Proteins: Automated Methods to Measure Transition Dipole Strength of Single Residues.
J Phys Chem B. 2025 Aug 21;129(33):8360-8367. doi: 10.1021/acs.jpcb.5c03566. Epub 2025 Aug 5.
3
Machine-learning based classification of 2D-IR liquid biopsies enables stratification of melanoma relapse risk.
Chem Sci. 2025 Apr 7;16(19):8394-8404. doi: 10.1039/d5sc01526j. eCollection 2025 May 14.
4
Modeling Infrared Spectroscopy of Nucleic Acids: Integrating Vibrational Non-Condon Effects with Machine Learning Schemes.
J Chem Theory Comput. 2024 Nov 26;20(22):10080-10094. doi: 10.1021/acs.jctc.4c01130. Epub 2024 Nov 11.
6
Simultaneously Measured Kinetics of Two Amyloid Polymorphs Using Cross Peak Specific 2D IR Spectroscopy.
J Phys Chem Lett. 2023 Dec 28;14(51):11750-11757. doi: 10.1021/acs.jpclett.3c02698. Epub 2023 Dec 20.
7
Increasing Pump-Probe Signal toward Asymptotic Limits.
J Phys Chem B. 2023 Jun 1;127(21):4694-4707. doi: 10.1021/acs.jpcb.3c01270. Epub 2023 May 18.
8
Probing local changes to α-helical structures with 2D IR spectroscopy and isotope labeling.
Biophys J. 2023 Apr 18;122(8):1491-1502. doi: 10.1016/j.bpj.2023.03.014. Epub 2023 Mar 11.
9
Determining the impact of gold nanoparticles on amyloid aggregation with 2D IR spectroscopy.
J Chem Phys. 2023 Mar 7;158(9):091101. doi: 10.1063/5.0136376.

本文引用的文献

1
Chain-length and mode-delocalization dependent amide-I anharmonicity in peptide oligomers.
J Chem Phys. 2012 Jun 7;136(21):214112. doi: 10.1063/1.4725181.
2
Environment Polarity in Proteins Mapped Noninvasively by FTIR Spectroscopy.
J Phys Chem Lett. 2012 Mar 12;3(7):939-944. doi: 10.1021/jz300150v.
5
Solution structures of rat amylin peptide: simulation, theory, and experiment.
Biophys J. 2010 Feb 3;98(3):443-51. doi: 10.1016/j.bpj.2009.10.029.
6
2D IR line shapes probe ovispirin peptide conformation and depth in lipid bilayers.
J Am Chem Soc. 2010 Mar 3;132(8):2832-8. doi: 10.1021/ja9101776.
8
How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping.
Phys Chem Chem Phys. 2009 Feb 7;11(5):748-61. doi: 10.1039/b813817f. Epub 2008 Dec 10.
9
Ion-water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange spectroscopy.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):375-80. doi: 10.1073/pnas.0811489106. Epub 2008 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验