Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Am Chem Soc. 2009 Mar 11;131(9):3385-91. doi: 10.1021/ja8094922.
We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.
我们展示了如何利用蛋白质酰胺 I' 和 II' 振动的多模 2D IR 光谱来区分蛋白质二级结构。对β-折叠、α-螺旋和无规卷曲构象中的聚-L-赖氨酸进行的依赖于偏振的酰胺 I'-II' 2D IR 实验表明,酰胺 I' 和 II' 对角和交叉峰的组合可以有效地区分二级结构含量,而单独的酰胺 I' 红外光谱则不能。这种增强的灵敏度源于酰胺 II' 和酰胺 I' 光谱之间的频率和幅度相关性,反映了二级结构的对称性。2D IR 表面用于参数化适合预测蛋白质酰胺 I'-II' 光谱的酰胺 I'-II' 络合物的激子模型。该模型表明,对这种灵敏度有主要贡献的振动相互作用是酰胺 II'-II' 键间负耦合和肽单元内酰胺 I'-II' 耦合的组合。经验确定的酰胺 II'-II' 耦合在二级结构中没有明显变化:β 片层为-8.5 cm(-1),α 螺旋为-8.7 cm(-1),无规卷曲为-5 cm(-1)。