Suppr超能文献

相似文献

1
Crystal structures of HIV-1 reverse transcriptase with picomolar inhibitors reveal key interactions for drug design.
J Am Chem Soc. 2012 Dec 5;134(48):19501-3. doi: 10.1021/ja3092642. Epub 2012 Nov 19.
2
Structure-based evaluation of C5 derivatives in the catechol diether series targeting HIV-1 reverse transcriptase.
Chem Biol Drug Des. 2014 May;83(5):541-9. doi: 10.1111/cbdd.12266. Epub 2014 Mar 14.
3
The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance.
J Mol Biol. 2001 Jun 1;309(2):437-45. doi: 10.1006/jmbi.2001.4648.
5
Rational design of potent non-nucleoside inhibitors of HIV-1 reverse transcriptase.
J Med Chem. 2012 Dec 13;55(23):10601-9. doi: 10.1021/jm301294g. Epub 2012 Nov 26.
8
Halogen bonding for rational drug design and new drug discovery.
Expert Opin Drug Discov. 2012 May;7(5):375-83. doi: 10.1517/17460441.2012.678829. Epub 2012 Mar 30.
10
Halogen bonding in halocarbon-protein complexes: a structural survey.
Chem Soc Rev. 2011 May;40(5):2267-78. doi: 10.1039/c0cs00177e. Epub 2011 Mar 1.

引用本文的文献

1
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
4
Design, synthesis, and biological testing of biphenylmethyloxazole inhibitors targeting HIV-1 reverse transcriptase.
Bioorg Med Chem Lett. 2023 Mar 15;84:129216. doi: 10.1016/j.bmcl.2023.129216. Epub 2023 Mar 3.
8
The Fellowship of Privileged Scaffolds-One Structure to Inhibit Them All.
Pharmaceuticals (Basel). 2021 Nov 16;14(11):1164. doi: 10.3390/ph14111164.
9
Covalent Inhibition of Wild-Type HIV-1 Reverse Transcriptase Using a Fluorosulfate Warhead.
ACS Med Chem Lett. 2021 Jan 6;12(2):249-255. doi: 10.1021/acsmedchemlett.0c00612. eCollection 2021 Feb 11.
10
Evolving understanding of HIV-1 reverse transcriptase structure, function, inhibition, and resistance.
Curr Opin Struct Biol. 2020 Apr;61:113-123. doi: 10.1016/j.sbi.2019.11.011. Epub 2020 Jan 11.

本文引用的文献

1
Treatment of Halogen Bonding in the OPLS-AA Force Field; Application to Potent Anti-HIV Agents.
J Chem Theory Comput. 2012 Oct 9;8(10):3895-3801. doi: 10.1021/ct300180w. Epub 2012 Apr 3.
2
Discovery of dimeric inhibitors by extension into the entrance channel of HIV-1 reverse transcriptase.
Bioorg Med Chem Lett. 2012 Feb 15;22(4):1565-8. doi: 10.1016/j.bmcl.2011.12.132. Epub 2012 Jan 5.
3
Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents.
J Med Chem. 2011 Dec 22;54(24):8582-91. doi: 10.1021/jm201134m. Epub 2011 Nov 29.
4
Systematic investigation of halogen bonding in protein-ligand interactions.
Angew Chem Int Ed Engl. 2011 Jan 3;50(1):314-8. doi: 10.1002/anie.201006781.
5
Halogen bonding: an electrostatically-driven highly directional noncovalent interaction.
Phys Chem Chem Phys. 2010 Jul 28;12(28):7748-57. doi: 10.1039/c004189k. Epub 2010 Jun 22.
7
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
8
Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design.
Nucleic Acids Res. 2008 Sep;36(15):5083-92. doi: 10.1093/nar/gkn464. Epub 2008 Aug 1.
9
High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1466-71. doi: 10.1073/pnas.0711209105. Epub 2008 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验