Suppr超能文献

基于纹理和颜色的胶囊内窥镜视频图像分割和病理检测。

Texture and color based image segmentation and pathology detection in capsule endoscopy videos.

机构信息

Technical University of Lodz, Institute of Electronics, Medical Electronics Division, 90-924 Lodz, ul. Wolczanska 211/215, Poland.

出版信息

Comput Methods Programs Biomed. 2014;113(1):396-411. doi: 10.1016/j.cmpb.2012.09.004. Epub 2012 Nov 17.

Abstract

This paper presents an in-depth study of several approaches to exploratory analysis of wireless capsule endoscopy images (WCE). It is demonstrated that versatile texture and color based descriptors of image regions corresponding to various anomalies of the gastrointestinal tract allows their accurate detection of pathologies in a sequence of WCE frames. Moreover, through classification of single pixels described by texture features of their neighborhood, the images can be segmented into homogeneous areas well matched to the image content. For both, detection and segmentation tasks the same procedure is applied which consists of features calculation, relevant feature subset selection and classification stages. This general three-stage framework is realized using various recognition strategies. In particular, the performance of the developed Vector Supported Convex Hull classification algorithm is compared against Support Vector Machines run in configuration with two different feature selection methods.

摘要

本文深入研究了几种无线胶囊内窥镜图像(WCE)探索性分析方法。研究表明,针对胃肠道各种异常的图像区域的多功能纹理和颜色描述符,可实现对 WCE 帧序列中病变的准确检测。此外,通过对邻域纹理特征描述的单个像素进行分类,可以将图像分割成与图像内容匹配良好的均匀区域。对于检测和分割任务,应用相同的程序,包括特征计算、相关特征子集选择和分类阶段。这个通用的三阶段框架是使用各种识别策略来实现的。特别是,与使用两种不同特征选择方法配置的支持向量机相比,开发的向量支持凸包分类算法的性能得到了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验