Suppr超能文献

无线胶囊内镜彩色视频分割

Wireless capsule endoscopy color video segmentation.

作者信息

Mackiewicz Michal, Berens Jeff, Fisher Mark

机构信息

School of Computing Sciences, University ofEast Anglia, NR47TJ Norwich, UK.

出版信息

IEEE Trans Med Imaging. 2008 Dec;27(12):1769-81. doi: 10.1109/TMI.2008.926061.

Abstract

This paper describes the use of color image analysis to automatically discriminate between oesophagus, stomach, small intestine, and colon tissue in wireless capsule endoscopy (WCE). WCE uses "pill-cam" technology to recover color video imagery from the entire gastrointestinal tract. Accurately reviewing and reporting this data is a vital part of the examination, but it is tedious and time consuming. Automatic image analysis tools play an important role in supporting the clinician and speeding up this process. Our approach first divides the WCE image into subimages and rejects all subimages in which tissue is not clearly visible. We then create a feature vector combining color, texture, and motion information of the entire image and valid subimages. Color features are derived from hue saturation histograms, compressed using a hybrid transform, incorporating the discrete cosine transform and principal component analysis. A second feature combining color and texture information is derived using local binary patterns. The video is segmented into meaningful parts using support vector or multivariate Gaussian classifiers built within the framework of a hidden Markov model. We present experimental results that demonstrate the effectiveness of this method.

摘要

本文描述了利用彩色图像分析自动区分无线胶囊内镜(WCE)中的食管、胃、小肠和结肠组织。WCE采用“药丸相机”技术从整个胃肠道获取彩色视频图像。准确查看和报告这些数据是检查的重要组成部分,但这既繁琐又耗时。自动图像分析工具在支持临床医生并加速这一过程中发挥着重要作用。我们的方法首先将WCE图像划分为子图像,并剔除所有组织显示不清晰的子图像。然后,我们创建一个特征向量,该向量结合了整个图像以及有效子图像的颜色、纹理和运动信息。颜色特征源自色调饱和度直方图,通过结合离散余弦变换和主成分分析的混合变换进行压缩。利用局部二值模式导出结合颜色和纹理信息的第二个特征。视频使用在隐马尔可夫模型框架内构建的支持向量或多元高斯分类器分割为有意义的部分。我们展示的实验结果证明了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验