Suppr超能文献

磁共振图像强度不均匀性校正综述

A Review on MR Image Intensity Inhomogeneity Correction.

作者信息

Hou Zujun

机构信息

Biomedical Imaging Lab., Singapore Bioimaging Consortium, 30 Biopolis Street, Matrix #07-01, 138671, Singapore.

出版信息

Int J Biomed Imaging. 2006;2006:49515. doi: 10.1155/IJBI/2006/49515. Epub 2006 Aug 7.

Abstract

Intensity inhomogeneity (IIH) is often encountered in MR imaging, and a number of techniques have been devised to correct this artifact. This paper attempts to review some of the recent developments in the mathematical modeling of IIH field. Low-frequency models are widely used, but they tend to corrupt the low-frequency components of the tissue. Hypersurface models and statistical models can be adaptive to the image and generally more stable, but they are also generally more complex and consume more computer memory and CPU time. They are often formulated together with image segmentation within one framework and the overall performance is highly dependent on the segmentation process. Beside these three popular models, this paper also summarizes other techniques based on different principles. In addition, the issue of quantitative evaluation and comparative study are discussed.

摘要

强度不均匀性(IIH)在磁共振成像中经常出现,并且已经设计了许多技术来校正这种伪影。本文试图回顾IIH场数学建模的一些最新进展。低频模型被广泛使用,但它们往往会破坏组织的低频成分。超曲面模型和统计模型可以适应图像并且通常更稳定,但它们通常也更复杂,消耗更多的计算机内存和CPU时间。它们通常在一个框架内与图像分割一起制定,整体性能高度依赖于分割过程。除了这三种流行的模型之外,本文还总结了基于不同原理的其他技术。此外,还讨论了定量评估和比较研究的问题。

相似文献

1
A Review on MR Image Intensity Inhomogeneity Correction.
Int J Biomed Imaging. 2006;2006:49515. doi: 10.1155/IJBI/2006/49515. Epub 2006 Aug 7.
2
Robust generative asymmetric GMM for brain MR image segmentation.
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.
3
Interplay between intensity standardization and inhomogeneity correction in MR image processing.
IEEE Trans Med Imaging. 2005 May;24(5):561-76. doi: 10.1109/TMI.2004.843256.
4
Intensity inhomogeneity correction of multispectral MR images.
Neuroimage. 2006 Aug 1;32(1):54-61. doi: 10.1016/j.neuroimage.2006.03.020. Epub 2006 May 2.
5
A level set method based on domain transformation and bias correction for MRI brain tumor segmentation.
J Neurosci Methods. 2021 Mar 15;352:109091. doi: 10.1016/j.jneumeth.2021.109091. Epub 2021 Jan 27.
6
MRI intensity inhomogeneity correction by combining intensity and spatial information.
Phys Med Biol. 2004 Sep 7;49(17):4119-33. doi: 10.1088/0031-9155/49/17/020.
9
Image-guided regularization level set evolution for MR image segmentation and bias field correction.
Magn Reson Imaging. 2014 Jan;32(1):71-83. doi: 10.1016/j.mri.2013.01.010. Epub 2013 Nov 13.
10
Parametric estimate of intensity inhomogeneities applied to MRI.
IEEE Trans Med Imaging. 2000 Mar;19(3):153-65. doi: 10.1109/42.845174.

引用本文的文献

1
LEARNING MRI CONTRAST-AGNOSTIC REGISTRATION.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2023:899-903. doi: 10.1109/isbi48211.2021.9434113. Epub 2021 May 25.
4
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images.
IEEE Trans Med Imaging. 2022 Mar;41(3):543-558. doi: 10.1109/TMI.2021.3116879. Epub 2022 Mar 2.
5
ADVIAN: Alzheimer's Disease VGG-Inspired Attention Network Based on Convolutional Block Attention Module and Multiple Way Data Augmentation.
Front Aging Neurosci. 2021 Jun 18;13:687456. doi: 10.3389/fnagi.2021.687456. eCollection 2021.
6
Head CT: Toward Making Full Use of the Information the X-Rays Give.
AJNR Am J Neuroradiol. 2021 Aug;42(8):1362-1369. doi: 10.3174/ajnr.A7153. Epub 2021 Jun 17.
7
Intensity non-uniformity correction in MR imaging using residual cycle generative adversarial network.
Phys Med Biol. 2020 Nov 27;65(21):215025. doi: 10.1088/1361-6560/abb31f.
8
Automated Estimation of Acute Infarct Volume from Noncontrast Head CT Using Image Intensity Inhomogeneity Correction.
Int J Biomed Imaging. 2019 Aug 21;2019:1720270. doi: 10.1155/2019/1720270. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验