Suppr超能文献

SynthMorph:无需获取图像即可学习对比不变配准。

SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images.

出版信息

IEEE Trans Med Imaging. 2022 Mar;41(3):543-558. doi: 10.1109/TMI.2021.3116879. Epub 2022 Mar 2.

Abstract

We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to contrast introduced by magnetic resonance imaging (MRI). While classical registration methods accurately estimate the spatial correspondence between images, they solve an optimization problem for every new image pair. Learning-based techniques are fast at test time but limited to registering images with contrasts and geometric content similar to those seen during training. We propose to remove this dependency on training data by leveraging a generative strategy for diverse synthetic label maps and images that exposes networks to a wide range of variability, forcing them to learn more invariant features. This approach results in powerful networks that accurately generalize to a broad array of MRI contrasts. We present extensive experiments with a focus on 3D neuroimaging, showing that this strategy enables robust and accurate registration of arbitrary MRI contrasts even if the target contrast is not seen by the networks during training. We demonstrate registration accuracy surpassing the state of the art both within and across contrasts, using a single model. Critically, training on arbitrary shapes synthesized from noise distributions results in competitive performance, removing the dependency on acquired data of any kind. Additionally, since anatomical label maps are often available for the anatomy of interest, we show that synthesizing images from these dramatically boosts performance, while still avoiding the need for real intensity images. Our code is available at doic https://w3id.org/synthmorph.

摘要

我们提出了一种在没有获得成像数据的情况下学习图像配准的策略,生成的网络不受磁共振成像(MRI)对比度的影响。虽然经典的配准方法可以准确地估计图像之间的空间对应关系,但它们为每一对新的图像对解决了一个优化问题。基于学习的技术在测试时速度很快,但仅限于注册对比度和几何内容与训练期间看到的相似的图像。我们通过利用多样化的合成标签图和图像的生成策略来消除对训练数据的这种依赖,该策略使网络暴露于广泛的变化中,迫使它们学习更不变的特征。这种方法产生了强大的网络,可以准确地推广到广泛的 MRI 对比度。我们进行了广泛的实验,重点是 3D 神经影像学,表明即使目标对比度在网络训练期间没有被看到,这种策略也可以实现任意 MRI 对比度的稳健和准确配准。我们展示了在对比度内和对比度之间都超过了最先进的注册精度,使用单个模型。至关重要的是,从噪声分布中合成任意形状的训练结果具有竞争力,消除了对任何类型的获取数据的依赖。此外,由于通常可以获得感兴趣的解剖结构的解剖标签图,因此我们表明,从这些标签图中合成图像可以显著提高性能,同时仍然避免了对真实强度图像的需求。我们的代码可在 doic https://w3id.org/synthmorph 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验