Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
Neuroimage. 2013 Feb 15;67:203-12. doi: 10.1016/j.neuroimage.2012.11.011. Epub 2012 Nov 17.
The use of magnetoencephalography (MEG) to assess long range functional connectivity across large scale distributed brain networks is gaining popularity. Recent work has shown that electrodynamic networks can be assessed using both seed based correlation or independent component analysis (ICA) applied to MEG data and further that such metrics agree with fMRI studies. To date, techniques for MEG connectivity assessment have typically used a variance normalised approach, either through the use of Pearson correlation coefficients or via variance normalisation of envelope timecourses prior to ICA. Here, we show that the use of variance information (i.e. data that have not been variance normalised) in source space projected Hilbert envelope time series yields important spatial information, and is of significant functional relevance. Further, we show that employing this information in functional connectivity analyses improves the spatial delineation of network nodes using both seed based and ICA approaches. The use of variance is particularly important in MEG since the non-independence of source space voxels (brought about by the ill-posed MEG inverse problem) means that spurious signals can exist in areas of low signal variance. We therefore suggest that this approach be incorporated into future studies.
使用脑磁图 (MEG) 来评估大规模分布式脑网络中的长程功能连接正在变得越来越流行。最近的研究表明,可以使用基于种子的相关性或应用于 MEG 数据的独立成分分析 (ICA) 来评估电磁网络,并且这些指标与 fMRI 研究一致。迄今为止,MEG 连接性评估技术通常使用方差归一化方法,要么通过使用 Pearson 相关系数,要么通过在 ICA 之前对包络时程进行方差归一化。在这里,我们表明,在源空间中使用方差信息(即未进行方差归一化的数据)来投影希尔伯特包络时间序列可以产生重要的空间信息,并且具有重要的功能相关性。此外,我们表明,在功能连接分析中使用这些信息可以通过基于种子和 ICA 的方法改善网络节点的空间描绘。在 MEG 中使用方差特别重要,因为源空间体素的非独立性(由 MEG 逆问题的不适定性引起)意味着在信号方差低的区域可能存在虚假信号。因此,我们建议将这种方法纳入未来的研究中。