Suppr超能文献

比较 R2* 校正方法在脂肪肝准确脂肪定量中的应用。

Comparison of R2* correction methods for accurate fat quantification in fatty liver.

机构信息

Department of Radiology, University of Wisconsin, Madison, Wisconsin 53792-3252, USA.

出版信息

J Magn Reson Imaging. 2013 Feb;37(2):414-22. doi: 10.1002/jmri.23835. Epub 2012 Nov 16.

Abstract

PURPOSE

To compare the performance of fat fraction quantification using single-R(2)* and dual-R(2)* correction methods in patients with fatty liver, using MR spectroscopy (MRS) as the reference standard.

MATERIALS AND METHODS

From a group of 97 patients, 32 patients with hepatic fat fraction greater than 5%, as measured by MRS, were identified. In these patients, chemical shift encoded fat-water imaging was performed, covering the entire liver in a single breathhold. Fat fraction was measured from the imaging data by postprocessing using 6 different models: single- and dual-R(2)* correction, each performed with complex fitting, magnitude fitting, and mixed magnitude/complex fitting to compare the effects of phase error correction. Fat fraction measurements were compared with co-registered spectroscopy measurements using linear regression.

RESULTS

Linear regression demonstrated higher agreement with MRS using single-R(2)* correction compared with dual-R(2)* correction. Among single-R(2)* models, all 3 fittings methods performed similarly well (slope = 1.0 ± 0.06, r(2) = 0.89-0.91).

CONCLUSION

Single-R(2)* modeling is more accurate than dual-R(2)* modeling for hepatic fat quantification in patients, even in those with high hepatic fat concentrations.

摘要

目的

通过磁共振波谱(MRS)作为参考标准,比较单 R(2)*和双 R(2)*校正方法在脂肪肝患者中定量脂肪分数的性能。

材料与方法

从 97 例患者中,筛选出 32 例肝脏脂肪分数大于 5%的患者,这些患者采用化学位移编码的水脂成像技术,单次屏气覆盖整个肝脏。通过后处理从成像数据中测量脂肪分数,使用 6 种不同模型:单和双 R(2)*校正,分别使用复拟合、幅度拟合和混合幅度/复拟合来比较相位误差校正的效果。使用线性回归比较与光谱测量的脂肪分数测量值。

结果

线性回归显示,与双 R(2)*校正相比,单 R(2)*校正与 MRS 具有更高的一致性。在单 R(2)*模型中,所有 3 种拟合方法的表现都非常相似(斜率=1.0±0.06,r^2=0.89-0.91)。

结论

即使在肝内脂肪浓度较高的患者中,单 R(2)*模型也比双 R(2)*模型更准确地定量肝脂肪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验