Suppr超能文献

比较 R2* 校正方法在脂肪肝准确脂肪定量中的应用。

Comparison of R2* correction methods for accurate fat quantification in fatty liver.

机构信息

Department of Radiology, University of Wisconsin, Madison, Wisconsin 53792-3252, USA.

出版信息

J Magn Reson Imaging. 2013 Feb;37(2):414-22. doi: 10.1002/jmri.23835. Epub 2012 Nov 16.

Abstract

PURPOSE

To compare the performance of fat fraction quantification using single-R(2)* and dual-R(2)* correction methods in patients with fatty liver, using MR spectroscopy (MRS) as the reference standard.

MATERIALS AND METHODS

From a group of 97 patients, 32 patients with hepatic fat fraction greater than 5%, as measured by MRS, were identified. In these patients, chemical shift encoded fat-water imaging was performed, covering the entire liver in a single breathhold. Fat fraction was measured from the imaging data by postprocessing using 6 different models: single- and dual-R(2)* correction, each performed with complex fitting, magnitude fitting, and mixed magnitude/complex fitting to compare the effects of phase error correction. Fat fraction measurements were compared with co-registered spectroscopy measurements using linear regression.

RESULTS

Linear regression demonstrated higher agreement with MRS using single-R(2)* correction compared with dual-R(2)* correction. Among single-R(2)* models, all 3 fittings methods performed similarly well (slope = 1.0 ± 0.06, r(2) = 0.89-0.91).

CONCLUSION

Single-R(2)* modeling is more accurate than dual-R(2)* modeling for hepatic fat quantification in patients, even in those with high hepatic fat concentrations.

摘要

目的

通过磁共振波谱(MRS)作为参考标准,比较单 R(2)*和双 R(2)*校正方法在脂肪肝患者中定量脂肪分数的性能。

材料与方法

从 97 例患者中,筛选出 32 例肝脏脂肪分数大于 5%的患者,这些患者采用化学位移编码的水脂成像技术,单次屏气覆盖整个肝脏。通过后处理从成像数据中测量脂肪分数,使用 6 种不同模型:单和双 R(2)*校正,分别使用复拟合、幅度拟合和混合幅度/复拟合来比较相位误差校正的效果。使用线性回归比较与光谱测量的脂肪分数测量值。

结果

线性回归显示,与双 R(2)*校正相比,单 R(2)*校正与 MRS 具有更高的一致性。在单 R(2)*模型中,所有 3 种拟合方法的表现都非常相似(斜率=1.0±0.06,r^2=0.89-0.91)。

结论

即使在肝内脂肪浓度较高的患者中,单 R(2)*模型也比双 R(2)*模型更准确地定量肝脂肪。

相似文献

1
Comparison of R2* correction methods for accurate fat quantification in fatty liver.
J Magn Reson Imaging. 2013 Feb;37(2):414-22. doi: 10.1002/jmri.23835. Epub 2012 Nov 16.
2
Quantification of liver fat in the presence of iron overload.
J Magn Reson Imaging. 2017 Feb;45(2):428-439. doi: 10.1002/jmri.25382. Epub 2016 Jul 13.
3
T1 bias in chemical shift-encoded liver fat-fraction: role of the flip angle.
J Magn Reson Imaging. 2014 Oct;40(4):875-83. doi: 10.1002/jmri.24457. Epub 2013 Nov 15.
4
Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease.
Pediatr Radiol. 2014 Nov;44(11):1379-87. doi: 10.1007/s00247-014-3024-y. Epub 2014 May 20.
6
Fat confounds the observed apparent diffusion coefficient in patients with hepatic steatosis.
Magn Reson Med. 2013 Feb;69(2):545-52. doi: 10.1002/mrm.24535. Epub 2012 Nov 14.
8
Reproducibility of hepatic fat fraction measurement by magnetic resonance imaging.
J Magn Reson Imaging. 2013 Jun;37(6):1359-70. doi: 10.1002/jmri.23928. Epub 2012 Nov 21.
9
On the confounding effect of temperature on chemical shift-encoded fat quantification.
Magn Reson Med. 2014 Aug;72(2):464-70. doi: 10.1002/mrm.24951. Epub 2013 Oct 7.
10
Modeling of T2* decay in vertebral bone marrow fat quantification.
NMR Biomed. 2015 Nov;28(11):1535-42. doi: 10.1002/nbm.3420. Epub 2015 Oct 1.

引用本文的文献

3
Improved liver fat and quantification at 0.55 T using locally low-rank denoising.
Magn Reson Med. 2025 Mar;93(3):1348-1364. doi: 10.1002/mrm.30324. Epub 2024 Oct 9.
4
State-of-the-Art Quantification of Liver Iron With MRI-Vendor Implementation and Available Tools.
J Magn Reson Imaging. 2025 Mar;61(3):1110-1132. doi: 10.1002/jmri.29526. Epub 2024 Aug 12.
5
Free-breathing MRI techniques for fat and R* quantification in the liver.
MAGMA. 2024 Aug;37(4):583-602. doi: 10.1007/s10334-024-01187-2. Epub 2024 Jul 23.
8
Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms.
MAGMA. 2023 Aug;36(4):529-551. doi: 10.1007/s10334-022-01053-z. Epub 2022 Dec 14.
9
Spectroscopy-based multi-parametric quantification in subjects with liver iron overload at 1.5T and 3T.
Magn Reson Med. 2022 Feb;87(2):597-613. doi: 10.1002/mrm.29021. Epub 2021 Sep 23.

本文引用的文献

1
In vivo characterization of the liver fat ¹H MR spectrum.
NMR Biomed. 2011 Aug;24(7):784-90. doi: 10.1002/nbm.1622. Epub 2010 Dec 12.
2
Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method.
Magn Reson Med. 2012 Mar;67(3):638-44. doi: 10.1002/mrm.23044. Epub 2011 Jun 28.
6
Quantification of liver fat with magnetic resonance imaging.
Magn Reson Imaging Clin N Am. 2010 Aug;18(3):337-57, ix. doi: 10.1016/j.mric.2010.08.013.
7
Prevalence, gender, ethnic variations, and prognosis of NASH.
J Gastroenterol. 2011 Jan;46 Suppl 1:63-9. doi: 10.1007/s00535-010-0311-8. Epub 2010 Sep 16.
8
Noise analysis for 3-point chemical shift-based water-fat separation with spectral modeling of fat.
J Magn Reson Imaging. 2010 Aug;32(2):493-500. doi: 10.1002/jmri.22220.
9
Chemical shift-based water/fat separation: a comparison of signal models.
Magn Reson Med. 2010 Sep;64(3):811-22. doi: 10.1002/mrm.22455.
10
Assessment of liver fat quantification in the presence of iron.
Magn Reson Imaging. 2010 Jul;28(6):767-76. doi: 10.1016/j.mri.2010.03.017. Epub 2010 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验