Suppr超能文献

ZnO/TiO2 纳米电缆结构光电极用于 CdS/CdSe 量子点共敏化太阳能电池。

ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.

机构信息

Advanced Material and Technology Institute, University of Science and Technology, Beijing, 100083, PR China.

出版信息

Nanoscale. 2013 Feb 7;5(3):936-43. doi: 10.1039/c2nr32663a. Epub 2012 Nov 20.

Abstract

Photoelectrode made of nanocable structure of ZnO nanorods (NR) coated with TiO(2) nanosheets (NSs) was investigated for CdS/CdSe quantum dot co-sensitized solar cells. ZnO NRs prepared solution reaction at 60 °C served as the backbone for direct electron transport in view of the single crystallinity of the ZnO NRs and the high electron mobility of ZnO semiconductor. Anatase TiO(2) NSs with the thickness of ∼10 nm and the length of ∼100 nm were assembled onto the surface of ZnO NRs via a solvothermal method. It was found that the thin shell of TiO(2) might have remarkable influence on the quantum dot sensitized solar cells (QDSCs) through (a) increasing the surface area of ZnO NRs to allow for adsorbing more quantum dots (QDs), which led to high short current density, (b) forming an energy barrier that hindered the electrons in the ZnO from being back to the electrolyte and QDs, and thus, reduced the charge recombination rate, resulting in prolonged electron lifetime and enhanced open voltage. In comparison with the case of ZnO NRs, the short-circuit current density, open-circuit voltage, fill factor and charge recombination resistance of ZnO/TiO(2) nanocable photoelectrode increase by 3%, 44%, 48% and 220%, respectively. As a result, a power conversion efficiency of 2.7% of QDSCs with core-shell structural nanocable photoelectrode has been obtained, which is as much as 230% of that of 1.2% obtained for ZnO NR photoelectrode.

摘要

光电化学电池采用 CdS/CdSe 量子点共敏化的 ZnO 纳米棒(NR)核 TiO2 纳米片(NS)纳米电缆结构光电极,对其进行了研究。在 60°C 的溶液反应中制备的 ZnO NR 用作直接电子传输的骨架,这是因为 ZnO NR 的单晶性和 ZnO 半导体的高电子迁移率。厚度约为 10nm、长度约为 100nm 的锐钛矿 TiO2 NS 通过溶剂热法组装到 ZnO NR 的表面。研究发现,TiO2 的薄壳可能会通过以下方式对量子点敏化太阳能电池(QDSCs)产生显著影响:(a)增加 ZnO NR 的表面积,允许吸附更多的量子点,从而导致高短路电流密度;(b)形成能垒,阻碍 ZnO 中的电子返回到电解质和量子点,从而降低电荷复合速率,延长电子寿命并提高开路电压。与 ZnO NRs 的情况相比,ZnO/TiO2 纳米电缆光电化学电池的短路电流密度、开路电压、填充因子和电荷复合电阻分别增加了 3%、44%、48%和 220%。结果,具有核壳结构纳米电缆光电化学电池的 QDSCs 的功率转换效率达到 2.7%,比 ZnO NR 光电化学电池的 1.2%提高了 230%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验