Suppr超能文献

我们应该如何最好地估计 BED 方法的平均最近持续时间?

How should we best estimate the mean recency duration for the BED method?

机构信息

The South African Department of Science and Technology/National Research Foundation Centre of Excellence in Epidemiological Modelling and Analysis, University of Stellenbosch, Stellenbosch, South Africa.

出版信息

PLoS One. 2012;7(11):e49661. doi: 10.1371/journal.pone.0049661. Epub 2012 Nov 16.

Abstract

BED estimates of HIV incidence from cross-sectional surveys are obtained by restricting, to fixed time T, the period over which incidence is estimated. The appropriate mean recency duration (Ω(T)) then refers to the time where BED optical density (OD) is less than a pre-set cut-off C, given the patient has been HIV positive for at most time T. Five methods, tested using data for postpartum women in Zimbabwe, provided similar estimates of Ω(T) for C = 0.8: i) The ratio (r/s) of the number of BED-recent infections to all seroconversions over T = 365 days: 192 days [95% CI 168-216]. ii) Linear mixed modeling (LMM): 191 days [95% CI 174-208]. iii) Non-linear mixed modeling (NLMM): 196 days [95% CrI 188-204]. iv) Survival analysis (SA): 192 days [95% CI 168-216]. Graphical analysis: 193 days. NLMM estimates of Ω(T)--based on a biologically more appropriate functional relationship than LMM--resulted in best fits to OD data, the smallest variance in estimates of VT, and best correspondence between BED and follow-up estimates of HIV incidence, for the same subjects over the same time period. SA and NLMM produced very similar estimates of Ω(T) but the coefficient of variation of the former was .3 times as high. The r/s method requires uniformly distributed seroconversion events but is useful if data are available only from a single follow-up. The graphical method produces the most variable results, involves unsound methodology and should not be used to provide estimates of Ω(T). False-recent rates increased as a quadratic function of C: for incidence estimation C should thus be chosen as small as possible, consistent with an adequate resultant number of recent cases, and accurate estimation of Ω(T). Inaccuracies in the estimation of Ω(T) should not now provide an impediment to incidence estimation.

摘要

BED 估计的 HIV 发病率来自横断面调查,通过限制估计发病率的时间段 T 来实现。适当的平均最近期持续时间(Ω(T))是指在患者 HIV 阳性时间最多不超过 T 的情况下,BED 光密度(OD)小于预设截止值 C 的时间。使用津巴布韦产后妇女的数据测试了五种方法,对于 C = 0.8,这些方法提供了类似的 Ω(T)估计值:i)在 T = 365 天内,BED 近期感染数量与所有血清转化数量的比例(r/s):192 天[95%CI 168-216]。ii)线性混合建模(LMM):191 天[95%CI 174-208]。iii)非线性混合建模(NLMM):196 天[95%CrI 188-204]。iv)生存分析(SA):192 天[95%CI 168-216]。图形分析:193 天。NLMM 对 Ω(T)的估计值--基于比 LMM 更具生物学意义的功能关系--对 OD 数据的拟合最好,VT 估计值的方差最小,BED 和随访 HIV 发病率的估计值之间的对应关系最好,适用于同一时间段内的同一组受试者。SA 和 NLMM 对 Ω(T)的估计值非常相似,但前者的变异系数是后者的 3 倍。r/s 方法要求血清转化事件均匀分布,但如果仅从一次随访中获得数据,则非常有用。图形方法产生的结果最不稳定,涉及不可靠的方法,不应用于提供 Ω(T)的估计值。假近期率随 C 的二次函数而增加:因此,为了进行发病率估计,C 应该选择尽可能小,同时确保有足够数量的近期病例,并准确估计 Ω(T)。现在,Ω(T)估计的不准确性不应再成为发病率估计的障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfec/3500313/3ae630bdb01b/pone.0049661.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验