Department of Science and Technology, National Research Foundation, Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa.
PLoS One. 2012;7(1):e29736. doi: 10.1371/journal.pone.0029736. Epub 2012 Jan 3.
Develop a simple method for optimal estimation of HIV incidence using the BED capture enzyme immunoassay.
Use existing BED data to estimate mean recency duration, false recency rates and HIV incidence with reference to a fixed time period, T.
Compare BED and cohort estimates of incidence referring to identical time frames. Generalize this approach to suggest a method for estimating HIV incidence from any cross-sectional survey.
Follow-up and BED analyses of the same, initially HIV negative, cases followed over the same set time period T, produce estimates of the same HIV incidence, permitting the estimation of the BED mean recency period for cases who have been HIV positive for less than T. Follow-up of HIV positive cases over T, similarly, provides estimates of the false-recent rate appropriate for T. Knowledge of these two parameters for a given population allows the estimation of HIV incidence during T by applying the BED method to samples from cross-sectional surveys. An algorithm is derived for providing these estimates, adjusted for the false-recent rate. The resulting estimator is identical to one derived independently using a more formal mathematical analysis. Adjustments improve the accuracy of HIV incidence estimates. Negative incidence estimates result from the use of inappropriate estimates of the false-recent rate and/or from sampling error, not from any error in the adjustment procedure.
Referring all estimates of mean recency periods, false-recent rates and incidence estimates to a fixed period T simplifies estimation procedures and allows the development of a consistent method for producing adjusted estimates of HIV incidence of improved accuracy. Unadjusted BED estimates of incidence, based on life-time recency periods, would be both extremely difficult to produce and of doubtful value.
开发一种使用 BED 捕获酶免疫测定法对 HIV 发病率进行最佳估计的简单方法。
利用现有的 BED 数据,根据固定时间段 T 估计平均近期持续时间、假近期率和 HIV 发病率。
比较 BED 和队列对参考相同时间框架的发病率估计。将这种方法推广到建议从任何横断面调查中估计 HIV 发病率的方法。
对相同的、最初 HIV 阴性的病例进行随访和 BED 分析,这些病例在相同的时间段 T 内进行跟踪,产生了相同的 HIV 发病率估计值,从而可以估计在 T 时间内已经 HIV 阳性的病例的 BED 平均近期期。同样,对 HIV 阳性病例进行 T 时间的随访,提供了适用于 T 的假近期率的估计值。对于给定的人群,了解这两个参数可以通过将 BED 方法应用于横断面调查的样本,来估计 T 期间的 HIV 发病率。为了提供这些估计值,已经推导出了一种算法,该算法考虑了假近期率的调整。所得估计量与使用更正式的数学分析独立推导出的估计量相同。调整可提高 HIV 发病率估计的准确性。负的发病率估计是由于使用了不适当的假近期率估计值和/或抽样误差,而不是由于调整程序中的任何错误。
将所有近期平均期、假近期率和发病率估计值都参考固定时间段 T,可以简化估计程序,并为产生改进准确性的调整后 HIV 发病率估计值开发一致的方法。基于终身近期期的未经调整的 BED 发病率估计值不仅非常难以产生,而且价值可疑。