School of ECE, Purdue University, West Lafayette, IN, USA.
Analyst. 2013 Jan 21;138(2):525-38. doi: 10.1039/c2an35346f.
Micro- and nanostructured electrodes form an integral part of a wide variety of electrochemical systems for biomolecular detection, batteries, solar cells, scanning electrochemical microscopy, etc. Given the complexity of the electrode structures, the Butler-Volmer formalism of redox reactions, and the diffusion transport of redox species, it is hardly surprising that only a few problems are amenable to closed-form, compact analytical solutions. While numerical solutions are widely used, it is often difficult to integrate the insights gained into the design and optimization of electrochemical systems. In this article, we develop a comprehensive analytical formalism for current transients that not only anticipate the responses of complex electrode structures to complicated voltammetry measurements, but also intuitively interpret diverse experiments such as redox detection of molecules at nanogap electrodes, scanning electrochemical microscopy, etc. The results from the analytical model, well supported through detailed numerical simulations and experimental data from the literature, have broad implications in the design and optimization of nanostructured electrodes for healthcare and energy storage applications.
微纳结构电极是各种电化学系统的重要组成部分,这些电化学系统用于生物分子检测、电池、太阳能电池、扫描电化学显微镜等。鉴于电极结构的复杂性、氧化还原反应的 Butler-Volmer 公式以及氧化还原物种的扩散传输,只有少数问题能够得到封闭形式、紧凑的解析解,这并不奇怪。虽然数值解被广泛使用,但将所获得的见解整合到电化学系统的设计和优化中往往很困难。在本文中,我们开发了一种用于电流瞬变的综合解析形式,它不仅可以预测复杂电极结构对复杂伏安测量的响应,而且可以直观地解释各种实验,如纳米间隙电极上分子的氧化还原检测、扫描电化学显微镜等。通过详细的数值模拟和文献中的实验数据得到的解析模型结果得到了很好的支持,这对医疗保健和储能应用中纳米结构电极的设计和优化具有广泛的意义。