Nguyen Tran N H, Jin Xin, Nolan James K, Xu Jian, Le Khanh Vy H, Lam Stephanie, Wang Yi, Alam Muhammad A, Lee Hyowon
Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States.
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
ACS Biomater Sci Eng. 2020 Sep 14;6(9):5315-5325. doi: 10.1021/acsbiomaterials.0c00647. Epub 2020 Aug 12.
Nonenzymatic glucose biosensors have the potential for a more reliable in vivo functionality due to the reduced risk of biorecognition element degradation. However, these novel sensing mechanisms often are nanoparticle-based and have nonlinear responses, which makes it difficult to gauge their potential utility against more conventional enzymatic biosensors. Moreover, these nonenzymatic biosensors often suffer from poor selectivity that needs to be better addressed before being used in vivo. To address these problems, here we present an amperometric nonenzymatic glucose biosensor fabricated using one-step electrodeposition of Au and Ru nanoparticles on the surface of a carbon-nanotube-based platinum-nanoparticle hybrid in conductive polymer. Using benchtop evaluations, we demonstrate that the bimetallic catalyst of Au-Ru nanoparticles can enable the nonenzymatic detection of glucose with a superior performance and stability. Furthermore, our biosensor shows good selectivity against other interferents, with a nonlinear dynamic range of 1-19 mM glucose. The Au-Ru catalyst has a conventional linear range of 1-10 mM, with a sensitivity of 0.2347 nA/(μM mm) ± 0.0198 ( = 3) and a limit of detection of 0.068 mM (signal-to-noise, / = 3). The biosensor also exhibits a good repeatability and stability at 37 °C over a 3 week incubation period. Finally, we use a modified Butler-Volmer nonlinear analytical model to evaluate the impact of geometrical and chemical design parameters on our nonenzymatic biosensor's performance, which may be used to help optimize the performance of this class of biosensors.
由于生物识别元件降解风险降低,非酶葡萄糖生物传感器具有更可靠的体内功能潜力。然而,这些新型传感机制通常基于纳米颗粒且具有非线性响应,这使得难以评估它们相对于更传统的酶生物传感器的潜在效用。此外,这些非酶生物传感器往往选择性较差,在用于体内之前需要更好地解决这一问题。为了解决这些问题,我们在此展示一种通过在导电聚合物中基于碳纳米管的铂纳米颗粒杂化物表面一步电沉积金和钌纳米颗粒制备的电流型非酶葡萄糖生物传感器。通过台式评估,我们证明金 - 钌纳米颗粒的双金属催化剂能够实现对葡萄糖的非酶检测,具有优异的性能和稳定性。此外,我们的生物传感器对其他干扰物表现出良好的选择性,葡萄糖的非线性动态范围为1 - 19 mM。金 - 钌催化剂的传统线性范围为1 - 10 mM,灵敏度为0.2347 nA/(μM·mm) ± 0.0198(n = 3),检测限为0.068 mM(信噪比,S/N = 3)。该生物传感器在37°C下经过3周孵育期也表现出良好的重复性和稳定性。最后,我们使用改进的巴特勒 - 沃尔默非线性分析模型来评估几何和化学设计参数对我们的非酶生物传感器性能的影响,这可用于帮助优化这类生物传感器的性能。
Sci Rep. 2016-11-10
Mater Sci Eng C Mater Biol Appl. 2017-9-1
Nanomaterials (Basel). 2024-12-30
Sensors (Basel). 2023-8-1
Adv Sci (Weinh). 2022-8
Sensors (Basel). 2021-7-8
Nanoscale Res Lett. 2021-4-20
J Electroanal Chem (Lausanne). 2020-6-1
Biosens Bioelectron. 2019-1-21
Anal Chim Acta. 2018-5-19
Biosens Bioelectron. 2017-5-30