Suppr超能文献

使用滑动测定法测量生物聚合物的弯曲刚度

Flexural rigidity measurements of biopolymers using gliding assays.

作者信息

Martin Douglas S, Yu Lu, Van Hoozen Brian L

机构信息

Department of Physics, Lawrence University.

出版信息

J Vis Exp. 2012 Nov 9(69):50117. doi: 10.3791/50117.

Abstract

Microtubules are cytoskeletal polymers which play a role in cell division, cell mechanics, and intracellular transport. Each of these functions requires microtubules that are stiff and straight enough to span a significant fraction of the cell diameter. As a result, the microtubule persistence length, a measure of stiffness, has been actively studied for the past two decades(1). Nonetheless, open questions remain: short microtubules are 10-50 times less stiff than long microtubules(2-4), and even long microtubules have measured persistence lengths which vary by an order of magnitude(5-9). Here, we present a method to measure microtubule persistence length. The method is based on a kinesin-driven microtubule gliding assay(10). By combining sparse fluorescent labeling of individual microtubules with single particle tracking of individual fluorophores attached to the microtubule, the gliding trajectories of single microtubules are tracked with nanometer-level precision. The persistence length of the trajectories is the same as the persistence length of the microtubule under the conditions used(11). An automated tracking routine is used to create microtubule trajectories from fluorophores attached to individual microtubules, and the persistence length of this trajectory is calculated using routines written in IDL. This technique is rapidly implementable, and capable of measuring the persistence length of 100 microtubules in one day of experimentation. The method can be extended to measure persistence length under a variety of conditions, including persistence length as a function of length along microtubules. Moreover, the analysis routines used can be extended to myosin-based acting gliding assays, to measure the persistence length of actin filaments as well.

摘要

微管是细胞骨架聚合物,在细胞分裂、细胞力学和细胞内运输中发挥作用。这些功能中的每一项都需要足够坚硬和笔直的微管,以跨越相当一部分细胞直径。因此,在过去二十年中,人们一直在积极研究微管的持久长度,这是一种衡量刚度的指标(1)。尽管如此,仍存在一些未解决的问题:短微管的刚度比长微管低10到50倍(2-4),甚至长微管测量的持久长度也相差一个数量级(5-9)。在这里,我们提出了一种测量微管持久长度的方法。该方法基于驱动蛋白驱动的微管滑动试验(10)。通过将单个微管的稀疏荧光标记与附着在微管上的单个荧光团的单粒子跟踪相结合,以纳米级精度跟踪单个微管的滑动轨迹。在所用条件下,轨迹的持久长度与微管的持久长度相同(11)。使用自动跟踪程序从附着在单个微管上的荧光团创建微管轨迹,并使用IDL编写的程序计算该轨迹的持久长度。该技术可快速实施,并且能够在一天的实验中测量100根微管的持久长度。该方法可以扩展到在各种条件下测量持久长度,包括作为沿微管长度函数的持久长度。此外,所使用的分析程序可以扩展到基于肌球蛋白的肌动蛋白滑动试验,以测量肌动蛋白丝的持久长度。

相似文献

1
Flexural rigidity measurements of biopolymers using gliding assays.
J Vis Exp. 2012 Nov 9(69):50117. doi: 10.3791/50117.
2
Measuring microtubule persistence length using a microtubule gliding assay.
Methods Cell Biol. 2013;115:13-25. doi: 10.1016/B978-0-12-407757-7.00002-5.
3
Linking path and filament persistence lengths of microtubules gliding over kinesin.
Sci Rep. 2022 Feb 23;12(1):3081. doi: 10.1038/s41598-022-06941-x.
4
A dynamical model of kinesin-microtubule motility assays.
Biophys J. 2001 Jun;80(6):2515-26. doi: 10.1016/S0006-3495(01)76223-6.
5
Microtubule curvatures under perpendicular electric forces reveal a low persistence length.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7941-6. doi: 10.1073/pnas.0704169105. Epub 2008 Mar 21.
6
Fluorescence imaging of single Kinesin motors on immobilized microtubules.
Methods Mol Biol. 2011;783:121-37. doi: 10.1007/978-1-61779-282-3_7.
7
Depletion force induced collective motion of microtubules driven by kinesin.
Nanoscale. 2015 Nov 21;7(43):18054-61. doi: 10.1039/c5nr02213d.
8
Controlling the Rigidity of Kinesin-Propelled Microtubules in an Gliding Assay Using the Deep-Sea Osmolyte Trimethylamine -Oxide.
ACS Omega. 2022 Jan 24;7(4):3796-3803. doi: 10.1021/acsomega.1c06699. eCollection 2022 Feb 1.
9
Quantum-dot-assisted characterization of microtubule rotations during cargo transport.
Nat Nanotechnol. 2008 Sep;3(9):552-6. doi: 10.1038/nnano.2008.216. Epub 2008 Aug 10.
10
Curvature-Sensitive Kinesin Binding Can Explain Microtubule Ring Formation and Reveals Chaotic Dynamics in a Mathematical Model.
Bull Math Biol. 2018 Nov;80(11):3002-3022. doi: 10.1007/s11538-018-0505-4. Epub 2018 Sep 28.

引用本文的文献

1
From isolated structures to continuous networks: A categorization of cytoskeleton-based motile engineered biological microstructures.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Jul;11(4):e1553. doi: 10.1002/wnan.1553. Epub 2019 Feb 11.

本文引用的文献

2
Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential.
Cell Biochem Biophys. 2012 Jul;63(3):199-209. doi: 10.1007/s12013-012-9356-z.
3
Spectral analysis methods for the robust measurement of the flexural rigidity of biopolymers.
Biophys J. 2012 Mar 7;102(5):1144-53. doi: 10.1016/j.bpj.2012.01.045. Epub 2012 Mar 6.
4
On the significance of microtubule flexural behavior in cytoskeletal mechanics.
PLoS One. 2011;6(10):e25627. doi: 10.1371/journal.pone.0025627. Epub 2011 Oct 5.
5
On tensegrity in cell mechanics.
Mol Cell Biomech. 2011 Sep;8(3):195-214.
6
A fluorescent GTP analog as a specific, high-precision label of microtubules.
Biotechniques. 2011 Jul;51(1):43-8. doi: 10.2144/000113703.
7
Fast, single-molecule localization that achieves theoretically minimum uncertainty.
Nat Methods. 2010 May;7(5):373-5. doi: 10.1038/nmeth.1449. Epub 2010 Apr 4.
8
Mechanics of microtubules.
J Biomech. 2010 Jan 5;43(1):23-30. doi: 10.1016/j.jbiomech.2009.09.005. Epub 2009 Oct 8.
9
Leveraging single protein polymers to measure flexural rigidity.
J Phys Chem B. 2009 Mar 26;113(12):3837-44. doi: 10.1021/jp808328a.
10
Quantum-dot-assisted characterization of microtubule rotations during cargo transport.
Nat Nanotechnol. 2008 Sep;3(9):552-6. doi: 10.1038/nnano.2008.216. Epub 2008 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验